Free Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S941 - S967
Published online 26 February 2021
  1. P. Alart and A. Curnier, A generalized Newton method for contact problems with friction. J. Méc. Théor. Appl. 7 (1988) 67–82. [Google Scholar]
  2. C. Annavarapu, M. Hautefeuille and J.E. Dolbow, A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228 (2012) 44–54. [Google Scholar]
  3. K.J. Bathe and F. Brezzi, On the convergence of a four-node plate bending element based on Mindlin–Reissner plate theory and mixed interpolation. In: Vol. 21 of Proc. Conference on Mathematics of Finite Elements and Applications–V. Academic Press, New York (1985) pp. 491–503. [Google Scholar]
  4. K.J. Bathe and E. Dvorkin, A four node plate bending element based on Mindlin-Reissner plate theory and mixed interpolation. Int. J. Numer. Methods Eng. 21 (1985) 367–383. [Google Scholar]
  5. J.L. Batoz and G. Dhatt, Modélisation des Structures par Éléments Finis, Poutres et plaques. Hermès Science Publications, Paris 2 (1990). [Google Scholar]
  6. S.C. Brenner, L.Y. Sung, H. Zhang and Y. Zhang, A quadratic C0 interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates. SIAM J. Numer. Anal. 50 (2012) 3329–3350. [Google Scholar]
  7. N. Büchter, E. Ramm and D. Roehl, Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37 (1994) 2551–2568. [Google Scholar]
  8. F. Chouly, An adaptation of Nitsche’s method to the Tresca friction problem. J. Math. Anal. Appl. 411 (2014) 329–339. [Google Scholar]
  9. F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J. Numer. Anal. 51 (2013) 1295–1307. [Google Scholar]
  10. F. Chouly, P. Hild and Y. Renard, Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. Math. Comput. 84 (2015) 1089–1112. [Google Scholar]
  11. F. Chouly, R. Mlika and Y. Renard, An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput. Methods Appl. Mech. Eng. 325 (2017) 265–288. [Google Scholar]
  12. F. Chouly, M. Fabre, P. Hild, J. Pousin and Y. Renard, An overview of recent results on Nitsche’s method for contact problems. In: Vol. 121 of Lecture Notes in Computational Science and Engineering. Geometrically Unfitted Finite Element Methods and Applications. Springer (2018) pp. 93–141. [CrossRef] [Google Scholar]
  13. F. Chouly, R. Mlika, Y. Renard, An unbiased Nitsche’s approximation of the frictional contact between two elastic structures, Numer. Math. 139 (2018) 593–631. [Google Scholar]
  14. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). [Google Scholar]
  15. P.G. Ciarlet and P. Destuynder, A justification of two-dimensional linear plate model. J. Méc. 18 (1979) 315–343. [Google Scholar]
  16. A. Curnier, Q.C. He and A. Klarbring, Continuum mechanics modelling of large deformation contact with friction. In: Contact Mechanics. Springer (1995) pp. 145–158. [CrossRef] [Google Scholar]
  17. P. Destuynder, Mathematical Analysis of Thin Plate Models. Springer (1996). [CrossRef] [Google Scholar]
  18. G. Drouetand P. Hild, Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. SIAM J. Numer. Anal. 53 (2015) 1488–1507. [Google Scholar]
  19. C. Eck and J. Jarusek, Existence results for the static contact problem with Coulomb friction. Math. Models Methods Appl. Sci. 8 (1998) 445–468. [Google Scholar]
  20. M. Fabre, J. Pousin and Y. Renard, A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method. SMAI J. Comput. Math. 2 (2016) 19–50. [CrossRef] [Google Scholar]
  21. G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I 8 (1963) 91–140. [Google Scholar]
  22. A. Fritz, S. Hüeber and B.I. Wohlmuth, A comparison of mortar and Nitsche techniques for linear elasticity. Calcolo 41 (2004) 115–137. [CrossRef] [Google Scholar]
  23. T. Gustafsson, Finite element methods for contact problems. Ph.D. thesis. Aalto University publication series doctoral dissertations (2018). [Google Scholar]
  24. T. Gustafsson, R. Stenberg and J. Videman, A stabilised finite element method for the plate obstacle problem. BIT Numer. Math. 59 (2018) 97–124. [Google Scholar]
  25. R. Hauptmann and K. Schweizerhof, A systematic development of “solid-shell” element formulations for linear and non-linear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Eng. 42 (1998) 49–69. [Google Scholar]
  26. J. Jarusek, Contact problems with bounded friction, Coercive case. Czech. Math. J. 33 (1983) 237–261. [CrossRef] [Google Scholar]
  27. M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2009) 1353–1374. [Google Scholar]
  28. J. Necas, J. Jarusek and J. Haslinger, On the solution of the variational inequality to the Signorini problem with small friction. Boll. Unione Mat. Ital. 17-B (1980) 796–811. [Google Scholar]
  29. J. Nitsche, Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  30. K. Poulios and Y. Renard, An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput. Struct. 153 (2015) 75–90. [Google Scholar]
  31. C. Pozzolini and A. Léger, A stability result concerning the obstacle problem for a plate. J. Math. Pures Appl. 90 (2008) 505–519. [Google Scholar]
  32. C. Pozzolini, Y. Renard and M. Salaun, Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations. IMA. J. Numer. Anal. 33 (2013) 261–294. [CrossRef] [MathSciNet] [Google Scholar]
  33. Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Methods Appl. Mech. Eng. 256 (2013) 38–55. [Google Scholar]
  34. Y. Renard and K. Poulios, Automated FE modeling of multiphysics problems based on a generic weak form language. Submitted (2020). [Google Scholar]
  35. B.I. Wohlmuth, A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989–1012. [Google Scholar]
  36. P. Wriggers and G. Zavarise, A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput. Mech. 41 (2008) 407–420. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you