Open Access
Issue
ESAIM: M2AN
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S733 - S759
DOI https://doi.org/10.1051/m2an/2020051
Published online 26 February 2021
  1. T. Alazard, A minicourse on the low Mach number limit. Disc. Contin. Dyn. Syst. Ser. S 1 (2008) 365–404. [Google Scholar]
  2. K. Asano, On the incompressible limit of the compressible Euler equation. Jpn. J. Appl. Math. 4 (1987) 455–488. [Google Scholar]
  3. B. Cheng, Singular limits and convergence rates of compressible Euler and rotating shallow water equations. SIAM J. Math. Anal. 44 (2012) 1050–1076. [Google Scholar]
  4. B. Cheng, Improved accuracy of incompressible approximation of compressible Euler equations. SIAM J. Math. Anal. 46 (2014) 3838–3864. [Google Scholar]
  5. B. Cheng and A. Mahalov, Time-averages of fast oscillatory systems. Disc. Contin. Dyn. Syst. Ser. S 6 (2013) 1151–1162. [Google Scholar]
  6. B. Cheng, Q. Ju and S. Schochet, Three-scale singular limits of evolutionary PDEs. Arch. Ration. Mech. Anal. 229 (2018) 601–625. [Google Scholar]
  7. R.M. Colombo, G. Guerra and V. Schleper, The compressible to incompressible limit of one dimensional Euler equations: the non smooth case. Arch. Ration. Mech. Anal. 219 (2016) 701–718. [Google Scholar]
  8. S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics. Commun. Part. Differ. Equ. 25 (2000) 1099–1113. [Google Scholar]
  9. P.A. Davidson, An Introduction to Magnetohydrodynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001). [Google Scholar]
  10. B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. [Google Scholar]
  11. S. Ding, J. Huang, H. Wen and R. Zi, Incompressible limit of the compressible nematic liquid crystal flow. J. Funct. Anal. 264 (2013) 1711–1756. [Google Scholar]
  12. A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. Commun. Pure Appl. Math. 57 (2004) 1159–1177. [Google Scholar]
  13. E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009). [Google Scholar]
  14. J. Földes, S. Friedlander, N. Glatt-Holtz and G. Richards, Asymptotic analysis for randomly forced MHD. SIAM J. Math. Anal. 49 (2017) 4440–4469. [Google Scholar]
  15. I. Gallagher, A mathematical review of the analysis of the betaplane model and equatorial waves. Disc. Contin. Dyn. Syst. Ser. S 1 (2008) 461–480. [Google Scholar]
  16. I. Gallagher, From Newton to Navier-Stokes, or how to connect fluid mechanics equations from microscopic to macroscopic scales. Bull. Amer. Math. Soc. (N.S.) 56 (2019) 65–85. [Google Scholar]
  17. S. Goto, Singular limit of the incompressible ideal magneto-fluid motion with respect to the Alfvén number. Hokkaido Math. J. 19 (1990) 175–187. [Google Scholar]
  18. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477–498. [Google Scholar]
  19. E. Grenier, Pseudo-differential energy estimates of singular perturbations. Commun. Pure Appl. Math. 50 (1997) 821–865. [Google Scholar]
  20. S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297 (2010) 371–400. [Google Scholar]
  21. S. Jiang, Q. Ju and F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity 25 (2012) 1351–1365. [Google Scholar]
  22. Q. Ju and X. Xu, Small Alfvén number limit of the plane magnetohydrodynamic flows. Appl. Math. Lett. 86 (2018) 77–82. [Google Scholar]
  23. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators. Springer-Verlag, New York-Berlin (1982). [Google Scholar]
  24. S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. [Google Scholar]
  25. S. Klainerman and A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. [Google Scholar]
  26. H. Lindblad and C. Luo, A priori estimates for the compressible Euler equations for a liquid with free surface boundary and the incompressible limit. Commun. Pure Appl. Math. 71 (2018) 1273–1333. [Google Scholar]
  27. P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585–627. [Google Scholar]
  28. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. In: Vol. 53 of Applied Mathematical Sciences. Springer-Verlag, New York (1984). [Google Scholar]
  29. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Ration. Mech. Anal 158 (2001) 61–90. [Google Scholar]
  30. S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differ. Equ. 75 (1988) 1–27. [Google Scholar]
  31. S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114 (1994) 476–512. [Google Scholar]
  32. P. Secchi, 2D slightly compressible ideal flow in an exterior domain. J. Math. Fluid Mech. 8 (2006) 564–590. [Google Scholar]
  33. S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986) 323–331. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you