Free Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S761 - S784
Published online 26 February 2021
  1. A. Abdulle and P. Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comput. 86 (2017) 549–587. [Google Scholar]
  2. C. Alboin, J. Jaffré, J.E. Eoberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media. Contemp. Math. 295 (2002) 13–24. [Google Scholar]
  3. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  4. E. Burman, P. Hansbo and M.G. Larson, A simple finite element method for elliptic bulk problems with embedded surfaces. Comput. Geosci. 23 (2019) 189–199. [Google Scholar]
  5. E. Burman, P. Hansbo, M.G. Larson and D. Samvin, A cut finite element method for elliptic bulk problems with embedded surfaces. Int. J. Geomath. 10 (2019) 10. [Google Scholar]
  6. D. Capatina, R. Luce, H. El-Otmany and N. Barrau, Nitsche’s extended finite element method for a fracture model in porous media. Appl. Anal. 95 (2016) 2224–2242. [Google Scholar]
  7. C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. [CrossRef] [EDP Sciences] [Google Scholar]
  8. D. Elfverson, E.H. Georgoulis, A. Målqvist and D. Peterseim, Convergence of a discontinuous Galerkin multiscale method. SIAM J. Numer. Anal. 51 (2013) 3351–3372. [Google Scholar]
  9. C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. [Google Scholar]
  10. F. Hellman and A. Målqvist, Contrast independent localization of multiscale problems. Multiscale Model. Simul. 15 (2017) 1325–1355. [Google Scholar]
  11. T.Y. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [Google Scholar]
  12. T.J.R. Hughes, G.R. Feijóo, L. Mazzei and J. Quincy, The variational multiscale method – paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. [Google Scholar]
  13. R. Kornhuber, D. Peterseim and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87 (2018) 2765–2774. [Google Scholar]
  14. R. Maier and D. Peterseim, Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math. 59 (2019) 443–462. [Google Scholar]
  15. A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [Google Scholar]
  16. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  17. L.H. Odsæter, T. Kvamsdal and M.G. Larson, A simple embedded discrete fracture-matrix model for a coupled flow and transport problem in porous media. Comput. Methods Appl. Mech. Eng. 343 (2019) 572–601. [Google Scholar]
  18. H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: M2AN 48 (2014) 517–552. [EDP Sciences] [Google Scholar]
  19. D. Peterseim and R. Scheichl, Robust numerical upscaling of elliptic multiscale problems at high contrast. Comput. Methods Appl. Math. 16 (2016) 579–603. [Google Scholar]
  20. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you