Free Access
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S993 - S1019
Published online 26 February 2021
  1. G. Acosta and R.G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. [Google Scholar]
  2. G. Acosta and R.G. Durán, Divergence Operator and Related Inequalities. Springer Briefs in Mathematics. Springer, New York (2017). [Google Scholar]
  3. G. Acosta, R.G. Durán and M.A. Muschietti, Solutions of the divergence operator on John domains. Adv. Math. 206 (2006) 373–401. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.P. Agnelli, E.M. Garau and P. Morin, A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: M2AN 48 (2014) 1557–1581. [CrossRef] [EDP Sciences] [Google Scholar]
  5. T. Arbogast and A.L. Taicher, A linear degenerate elliptic equation arising from two-phase mixtures. SIAM J. Numer. Anal. 54 (2016) 3105–3122. [Google Scholar]
  6. D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451. [Google Scholar]
  7. D. Boffi, F. Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk and M. Fortin, Mixed Finite Elements, Compatibility Conditions, and Applications. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26-July 1, 2006, edited by B. and L. Gastaldi In: Vol. 1939 of Lecture Notes in Mathematics. Springer, Berlin-Heidelberg. [Google Scholar]
  8. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Berlin-Heidelberg (2013). [CrossRef] [Google Scholar]
  9. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). [CrossRef] [Google Scholar]
  10. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32 (2007) 1245–1260. [Google Scholar]
  11. S.K. Chua, Weighted Sobolev inequalities on domains satisfying the chain condition. Proc. Am. Math. Soc. 117 (1993) 449–457. [Google Scholar]
  12. R.R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51 (1974) 241–250. [Google Scholar]
  13. L. Diening, M. Ružička and K. Schumacher, A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35 (2010) 87–114. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Drelichman and R.G. Durán, Improved Poincaré inequalities with weights. J. Math. Anal. App. 347 (2008) 286–293. [Google Scholar]
  15. J. Duoandikoetxea, Fourier Analysis. In: Vol. 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001). [Google Scholar]
  16. T. Dupont and L.R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463. [Google Scholar]
  17. R.G. Durán and F. López García, Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann. Acad. Sci. Fenn. Math. 35 (2010) 421–438. [Google Scholar]
  18. R.G. Durán, A.L. Lombardi and M.I. Prieto, Supercloseness on graded meshes for Q1 finite element approximation of a reaction–diffusion equation. J. Comput. Appl. Math. 242 (2013) 232–247. [Google Scholar]
  19. E.B. Fabes, C.E. Kenig and R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Part. Differ. Equ. 7 (1982) 77–116. [Google Scholar]
  20. R.S. Falk and J.E. Osborn, Remarks on mixed finite element methods for problems with rough coefficients. Math. Comput. 62 (1994) 1–19. [Google Scholar]
  21. J.L. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. In: Vol. 116 of North-Holland Mathematics Studies. North-Holland Publishing Co (1985). [Google Scholar]
  22. V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. In: Vol. 5 of Springer Series in Computational Mathematics. Springer, Berlin-Heidelberg (1986). [CrossRef] [Google Scholar]
  23. R. Hurri-Syrjänen, An improved Poincaré inequality. Proc. Am. Math. Soc. 120 (1994) 213–222. [Google Scholar]
  24. R. Hurri-Syrjänen, A weighted Poincaré inequality with a doubling weight. Proc. Am. Math. Soc. 126 (1998) 545–552. [Google Scholar]
  25. T. Kilpeläinen, Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Math. 19 (1994) 95–113. [Google Scholar]
  26. D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted Lp spaces. Trans. Am. Math. Soc. 259 (1980) 235–254. [Google Scholar]
  27. A. Lunardi, Interpolation Theory, 3rd edition [of MR2523200]. In: Vol. 16 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2018). [Google Scholar]
  28. L.D. Marini and P. Pietra, Mixed finite element approximation of a degenerate elliptic problem. Numer. Math. 71 (1995) 225–236. [Google Scholar]
  29. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165 (1972) 207–226. [Google Scholar]
  30. R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15 (2015) 733–791. [CrossRef] [MathSciNet] [Google Scholar]
  31. R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. [Google Scholar]
  32. R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54 (2016) 848–873. [Google Scholar]
  33. K. Schumacher, Solutions to the equation div u = f in weighted Sobolev spaces. In: Vol. 81 of Parabolic and Navier–Stokes Equations. Part 2, Banach Center Publications. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2008) pp. 433–440. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you