Issue |
ESAIM: M2AN
Volume 48, Number 6, November-December 2014
|
|
---|---|---|
Page(s) | 1557 - 1581 | |
DOI | https://doi.org/10.1051/m2an/2014010 | |
Published online | 09 September 2014 |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
1 Instituto de Matemática Aplicada del Litoral, Universidad
Nacional del Litoral and CONICET. IMAL, Colectora Ruta Nac. N. 168, Paraje El Pozo, 3000
Santa Fe, Argentina.
jpagnelli@santafe-conicet.gov.ar,egarau@santafe-conicet.gov.ar,pmorin@santafe-conicet.gov.ar
2 Facultad de Matemática, Astronomía y Física, Universidad
Nacional de Córdoba, Argentina.
3 Departamento de Matemática, Facultad de Ingeniería Química,
Universidad Nacional del Litoral, Argentina.
Received:
31
January
2013
Revised:
5
August
2013
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices.
Mathematics Subject Classification: 35J15 / 65N12 / 65N15 / 65N30 / 65N50 / 65Y20
Key words: Elliptic problems / point sources / a posteriori error estimates / finite elements / weighted Sobolev spaces
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.