Free Access
Volume 55, Number 1, January-February 2021
Page(s) 1 - 36
Published online 18 February 2021
  1. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. In: Vol. 5 of Studies in Mathematics and its Applications, North Holland (1978). [Google Scholar]
  2. M. Bernadou, P.G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. J. Elast. 34 (1994) 111–138. [Google Scholar]
  3. D. Blanchard and G. Griso, Decomposition of the deformations of a thin shell. Asymptotic behavior of the Green-St Venant’s strain tensor. J. Elast. 101 (2010) 179–205. [Google Scholar]
  4. D. Blanchard and G. Griso, Decomposition of deformations of thin rods: application to nonlinear elasticity. Anal. Appl. 7 (2009) 21–71. [Google Scholar]
  5. D. Caillerie, Thin elastic and periodic plates. Math. Methods Appl. Sci. 6 (1984) 159–191. [Google Scholar]
  6. P.G. Ciarlet, Mathematical Elasticity. Vol. III. Theory of shells. In: Vol. 29 of Studies in Mathematics and its Applications, North-Holland (2000). [Google Scholar]
  7. P.G. Ciarlet and V. Lods, Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ratio. Mech. Anal. 136 (1996) 119–161. [Google Scholar]
  8. P.G. Ciarlet and B. Miara, On the ellipticity of linear shell models. Z. Angew. Math. Phys. 43 (1992) 243–253. [Google Scholar]
  9. D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585–1620. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Cioranescu, A. Damlamian and G. Griso, The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems. Vol. 3 of Series in Contemporary Mathematics. Springer, Singapore (2018). [Google Scholar]
  11. E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 4 (1973) 391–411. [Google Scholar]
  12. M. Ghergu, G. Griso, H. Mechkour and B. Miara, Homogenization of thin piezoelectricperforated shells. ESAIM: M2AN 41 (2007) 875–895. [EDP Sciences] [Google Scholar]
  13. G. Griso, Asymptotic behaviour of curved rods by the unfolding method. Math. Methods Appl. Sci. 27 (2004) 2081–2110. [Google Scholar]
  14. G. Griso, Decompositions of displacements of thin structures. J. Math. Pure Appl. 89 (2008) 199–223. [Google Scholar]
  15. G. Griso and B. Miara, Homogenization of periodically heterogeneous thin beams. Chin. Ann. Math. Ser. B 39 (2018) 397–426. [Google Scholar]
  16. G. Griso, J. Orlik and S. Wackerle, Asymptotic behavior for textiles in von-Kármán regime (to appear in JMPA). Preprint arXiv:1912.10928 (2019). [Google Scholar]
  17. B. Miara and V. Valente, Exact controllability of a Koiter shell by a boundary action. J. Elast. 52 (1998/1999) 267–287. [Google Scholar]
  18. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–629. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Neuss-Radu, Mathematical modelling and multi-scale analysis of transport processes through membranes, Diss. Habilitation thesis. University of Heidelberg (2017). [Google Scholar]
  20. G. Panasenko, Multi-Scale Modelling for Structures and Composites. Springer, Dordrecht (2005). [Google Scholar]
  21. E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory. In: Lecture Notes in Physics, Springer, Berlin-Heidelberg (1980). [Google Scholar]
  22. K. Yosida, Functional Analysis. Springer, Berlin-Heidelberg (1980). [Google Scholar]
  23. E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone Operators. Translated from the German by the author and Leo F. Boron. Springer, New York, NY (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you