Open Access
Issue
ESAIM: M2AN
Volume 55, Number 1, January-February 2021
Page(s) 37 - 55
DOI https://doi.org/10.1051/m2an/2020080
Published online 18 February 2021
  1. A. Abdulle, W.E.B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. [CrossRef] [MathSciNet] [Google Scholar]
  2. S. Armstrong and P. Dario, Elliptic regularity and quantitative homogenization on percolation clusters. Comm. Pure Appl. Math. 71 (2018) 1717–1849. [Google Scholar]
  3. S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative stochastic homogenization and large-scale regularity. In: Vol. 352 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin-Heidelberg (2019). [Google Scholar]
  4. I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (2011) 373–406. [Google Scholar]
  5. M. Bebendorf and W. Hackbusch, Existence of ℋ-matrix approximants to the inverse FE-matrix of elliptic operators with L-coefficients. Numer. Math. 95 (2003) 1–28. [Google Scholar]
  6. A. Brandt, Multiscale scientific computation: review 2001. In: Vol. 20 of Multiscale and multiresolution methods. Lect. Notes Comput. Sci. Eng. Springer, Berlin-Heidelberg (2002) 3–95. [Google Scholar]
  7. P. Dario, Optimal corrector estimates on percolation clusters. Preprint arXiv:1805.00902 (2018). [Google Scholar]
  8. W.E., Principles of Multiscale Modeling. Cambridge University Press, Cambridge (2011). [Google Scholar]
  9. Y. Efendiev and T.Y. Hou, Multiscale finite element methods. In: Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009). [Google Scholar]
  10. Y. Efendiev, J. Galvis and T.Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251 (2013) 116–135. [Google Scholar]
  11. A.-C. Egloffe, A. Gloria, J.-C. Mourrat and T.N. Nguyen, Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth. IMA J. Numer. Anal. 35 (2015) 499–545. [Google Scholar]
  12. B. Engquist and E. Luo, New coarse grid operators for highly oscillatory coefficient elliptic problems. J. Comput. Phys. 129 (1996) 296–306. [Google Scholar]
  13. B. Engquist and E. Luo, Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal. 34 (1997) 2254–2273. [Google Scholar]
  14. L.C. Evans, Partial differential equations, 2nd edition. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  15. J. Fischer, D. Gallistl and D. Peterseim, A priori error analysis of a numerical stochastic homogenization method. Preprint arXiv:1912.11646 (2019). [Google Scholar]
  16. A. Gholami, D. Malhotra, H. Sundar and G. Biros, FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube. SIAM J. Sci. Comput. 38 (2016) C280–C306. [Google Scholar]
  17. A. Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. ESAIM: M2AN 46 (2012) 1–38. [EDP Sciences] [Google Scholar]
  18. L. Grasedyck, I. Greff and S. Sauter, The AL basis for the solution of elliptic problems in heterogeneous media. Multiscale Model. Simul. 10 (2012) 245–258. [Google Scholar]
  19. M. Griebel and S. Knapek, A multigrid-homogenization method. In: Vol. 59 of Modeling and computation in environmental sciences (Stuttgart, 1995). Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1997) 187–202. [Google Scholar]
  20. C. Gu, Uniform estimate of an iterative method for elliptic problems with rapidly oscillating coefficients. Preprint arXiv:1807.06565 (2018). [Google Scholar]
  21. C. Gu, An efficient algorithm for solving elliptic problems on percolation clusters. Preprint arXiv:1907.13571 (2019). [Google Scholar]
  22. Q. Han and F. Lin, Elliptic partial differential equations. In: Vol. 1 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence, RI (1997). [Google Scholar]
  23. A. Hannukainen, J.-C. Mourrat and H. Stoppels, Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids. Preprint arXiv:1905.06751 (2019). [Google Scholar]
  24. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. [Google Scholar]
  25. S. Knapek, Matrix-dependent multigrid homogeneization for diffusion problems. SIAM J. Sci. Comput. 20 (1998) 515–533. [Google Scholar]
  26. R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036. [Google Scholar]
  27. A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [Google Scholar]
  28. A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems. M2AN Math. Model. Numer. Anal. 36 (2002) 537–572. [Google Scholar]
  29. J.-C. Mourrat, Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math. 19 (2019) 435–483. [Google Scholar]
  30. N. Neuss, W. Jäger and G. Wittum, Homogenization and multigrid. Computing 66 (2001) 1–26. [Google Scholar]
  31. H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59 (2017) 99–149. [Google Scholar]
  32. H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: M2AN 48 (2014) 517–552. [EDP Sciences] [Google Scholar]
  33. G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients. In: Vol. 27 of Random fields, Vol. I, II (Esztergom, 1979). Colloq. Math. Soc. János Bolyai. North-Holland (1981) 835–873. [Google Scholar]
  34. K. Stüben, A review of algebraic multigrid. J. Comput. Appl. Math. 128 (2001) 281–309. [Google Scholar]
  35. H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas and G. Stadler, Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you