Free Access
Issue
ESAIM: M2AN
Volume 55, Number 1, January-February 2021
Page(s) 131 - 169
DOI https://doi.org/10.1051/m2an/2020070
Published online 18 February 2021
  1. M. Abundo, On the representation of an integrated Gauss–Markov process. Sci. Math. Jpn. 77 (2015) 357–361. [Google Scholar]
  2. D. Anderson, An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM J. Numer. Anal. 50 (2012) 2237–2258. [Google Scholar]
  3. B.D.O. Anderson and J.B. Moore, Optimal Control: Linear Quadratic Methods. Dover Books on Engineering. Dover Publications (2007). [Google Scholar]
  4. G. Arampatzis and M.A. Katsoulakis, Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations. J. Chem. Phys. 140 (2014) 124108. [Google Scholar]
  5. S. Asmussen, O. Nerman and M. Olsson, Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23 (1996) 419–441. [Google Scholar]
  6. R. Atar, K. Chowdhary and P. Dupuis, Robust bounds on risk-sensitive functionals via Rényi divergence. SIAM/ASA J. Uncertainty Quantif. 3 (2015) 18–33. [Google Scholar]
  7. R. Atar, A. Budhiraja, P. Dupuis and R. Wu, Robust bounds and optimization at the large deviations scale for queueing models via Rényi divergence. Preprint arXiv:2001.02110(2020). [Google Scholar]
  8. D. Bakry and M. Emery, Hypercontractivité do semi-groups de diffusion. C.R. Acad. Sci. Paris Sér I Math. 299 (1984) 775–778. [Google Scholar]
  9. H. Bijl and T.B. Schön, Optimal controller/observer gains of discounted-cost LQG systems. Automatica 101 (2019) 471–474. [Google Scholar]
  10. J. Birrell and L. Rey-Bellet, Uncertainty quantification for markov processes via variational principles and functional inequalities. SIAM/ASA J. Uncertainty Quantif. 8 (2020) 539–572. [Google Scholar]
  11. M. Bladt and B.F. Nielsen, Matrix-exponential distributions in applied probability. In: Probability Theory and Stochastic Modelling, Springer, New York (2017). [Google Scholar]
  12. S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities. Oxford University Press, Oxford (2013). [Google Scholar]
  13. S. Boyd, S.P. Boyd and L. Vandenberghe, Convex optimization. Berichte über verteilte messysteme, no. pt. 1, Cambridge University Press (2004). [Google Scholar]
  14. T. Breuer and I. Csiszár, Measuring distribution model risk. Math. Finance 26 (2013) 395–411. [Google Scholar]
  15. T. Breuer and I. Csiszár, Systematic stress tests with entropic plausibility constraints. J. Banking Finance 37 (2013) 1552–1559. [Google Scholar]
  16. L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao, Statistical analysis of a telephone call center. J. Am. Stat. Assoc. 100 (2005) 36–50. [Google Scholar]
  17. K. Chowdhary and P. Dupuis, Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification. ESAIM: M2AN 47 (2013) 635–662. [EDP Sciences] [Google Scholar]
  18. T. Dankel, On the distribution of the integrated square of the Ornstein-Uhlenbeck process. SIAM J. Appl. Math. 51 (1991) 568–574. [Google Scholar]
  19. P. Dupuis and R.S. Ellis, A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics, John Wiley & Sons, New York (2011). [Google Scholar]
  20. P. Dupuis, M.A. Katsoulakis, Y. Pantazis and P. Plecháč, Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA J. Uncertainty Quantif. 4 (2016) 80–111. [Google Scholar]
  21. P. Dupuis, M.A. Katsoulakis, Y. Pantazis and L. Rey-Bellet, Sensitivity analysis for rare events based on Rényi divergence. Ann. Appl. Probab. 30 (2020) 1507–1533. [Google Scholar]
  22. B. Engelmann and R. Rauhmeier, The Basel II Risk Parameters: Estimation, Validation, Stress Testing – With Applications to Loan Risk Management. Springer, Berlin-Heidelberg (2011). [Google Scholar]
  23. M.J. Faddy, Examples of fitting structured phase-type distributions. Appl. Stochastic Models Data Anal. 10 (1994) 247–255. [Google Scholar]
  24. M.I. Freidlin, Functional integration and partial differential equations. In: Vol. 109 of Annals of Mathematics Studies. Princeton University Press (2016). [Google Scholar]
  25. V. Girardin and N. Limnios, On the entropy for semi-Markov processes. J. Appl. Probab. 40 (2003) 1060–1068. [Google Scholar]
  26. P. Glasserman, Monte Carlo methods in financial engineering. In: Stochastic Modelling and Applied Probability, Springer, New York (2013). [Google Scholar]
  27. P. Glasserman and X. Xu, Robust risk measurement and model risk. Quant. Finance 14 (2014) 29–58. [Google Scholar]
  28. P.W. Glynn, Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33 (1990) 75–84. [Google Scholar]
  29. K. Gourgoulias, M.A. Katsoulakis and L. Rey-Bellet, Information metrics for long-time errors in splitting schemes for stochastic dynamics and parallel kinetic Monte Carlo. SIAM J. Sci. Comput. 38 (2016) A3808–A3832. [Google Scholar]
  30. K. Gourgoulias, M.A. Katsoulakis, L. Rey-Bellet and J. Wang, How biased is your model? Concentration inequalities, information and model bias. IEEE Trans. Inf. Theory 66 (2020) 3079–3097. [Google Scholar]
  31. M. Hairer and A.J. Majda, A simple framework to justify linear response theory. Nonlinearity 23 (2010) 909–922. [Google Scholar]
  32. S. Heinz and H. Bessaih, Stochastic equations for complex systems: theoretical and computational topics. In: Mathematical Engineering, Springer International Publishing (2015). [Google Scholar]
  33. J. Janssen and R. Manca, Applied semi-Markov Processes. Springer, New York (2006). [Google Scholar]
  34. I. Karatzas and S. Shreve, Brownian motion and stochastic calculus. in: Graduate Texts in Mathematics, Springer, New York (2014). [Google Scholar]
  35. M.A. Katsoulakis, L. Rey-Bellet and J. Wang, Scalable information inequalities for uncertainty quantification. J. Comput. Phys. 336 (2017) 513–545. [Google Scholar]
  36. D. Kim, B.J. Debusschere and H.N. Najm, Spectral methods for parametric sensitivity in stochastic dynamical systems. Biophys. J. 92 (2007) 379–393. [PubMed] [Google Scholar]
  37. H. Kushner and P.G. Dupuis, Numerical methods for stochastic control problems in continuous time. In: Stochastic Modelling and Applied Probability, Springer, New York (2013). [Google Scholar]
  38. J.C. Lagarias, J.A. Reeds, M.H. Wright and P.E. Wright, Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9 (1998) 112–147. [Google Scholar]
  39. H. Lam, Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41 (2016) 1248–1275. [Google Scholar]
  40. F. Liese and I. Vajda, On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 52 (2006) 4394–4412. [Google Scholar]
  41. N. Limnios and G. Oprisan, Semi-Markov processes and reliability. In: Statistics for Industry and Technology, Birkhäuser Boston (2012). [Google Scholar]
  42. W.M. McEneaney, A robust control framework for option pricing. Math. Oper. Res. 22 (1997) 202–221. [Google Scholar]
  43. J.A. Nelder and R. Mead, A simplex method for function minimization. Comput. J. 7 (1965) 308–313. [Google Scholar]
  44. H. Owhadi, C. Scovel, T.J. Sullivan, M. McKerns and M. Ortiz, Optimal uncertainty quantification. SIAM Rev. 55 (2013) 271–345. [Google Scholar]
  45. W. Page, Applications of mathematics in economics. MAA notes, Mathematical Association of America (2013). [Google Scholar]
  46. Y. Pantazis and M.A. Katsoulakis, A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. J. Chem. Phys. 138 (2013) 054115. [Google Scholar]
  47. H.L. Peter and S.T. J, Uncertainty within economic models. In: World Scientific Series In Economic Theory, World Scientific Publishing Company (2014). [Google Scholar]
  48. S. Plyasunov and A.P. Arkin, Efficient stochastic sensitivity analysis of discrete event systems. J. Comput. Phys. 221 (2007) 724–738. [Google Scholar]
  49. H. Qian, Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J. Phys. Chem. B 110 (2006) 15063–15074. [CrossRef] [PubMed] [Google Scholar]
  50. L. Rey-Bellet and K. Spiliopoulos, Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity 28 (2015) 2081–2103. [Google Scholar]
  51. P.W. Sheppard, M. Rathinam and M. Khammash, A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems. J. Chem. Phys. 136 (2012) 034115. [Google Scholar]
  52. S.E. Shreve, Stochastic Calculus for Finance II: Continuous-time Models. In: Vol. 11 of Springer Finance Textbooks, Springer, New York (2004). [Google Scholar]
  53. L. Wu, A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri Poincare (B) Probab. Statistics 36 (2000) 435–445. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you