Open Access
Issue
ESAIM: M2AN
Volume 55, Number 1, January-February 2021
Page(s) 99 - 130
DOI https://doi.org/10.1051/m2an/2020073
Published online 18 February 2021
  1. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [Google Scholar]
  2. F. Bassi, A. Crivellini, S. Rebay and M. Savini, Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and kω turbulence model equations. Comput. Fluids 34 (2005) 507–540. [Google Scholar]
  3. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267–279. [Google Scholar]
  4. G. Berkooz, P. Holmes and J. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25 (1993) 539–575. [Google Scholar]
  5. P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems. Numer. Math. 36 (1980) 1–25. [Google Scholar]
  7. J. Brunken, K. Smetana and K. Urban, (Parametrized) first order transport equations: realization of optimally stable Petrov-Galerkin methods. SIAM J. Sci. Comput. 41 (2019) A592–A621. [Google Scholar]
  8. T. Bui-Thanh, M. Damodaran and K. Willcox, Proper orthogonal decomposition extensions for parametric applications in compressible aerodynamics. In: 21st AIAA Applied Aerodynamics Conference (2003) 4213. [Google Scholar]
  9. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. Handbook Numer. Anal. 5 (1997) 487–637. [Google Scholar]
  10. K. Carlberg, C. Farhat, J. Cortial and D. Amsallem, The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242 (2013) 623–647. [Google Scholar]
  11. R. Chakir and Y. Maday, Une méthode combinée d’éléments finis à deux grilles/bases réduites pour l’approximation des solutions d’une EDP paramétrique. C. R. Math. 347 (2009) 435–440. [Google Scholar]
  12. G. Collins, K. Fidkowski and C.E. Cesnik, Petrov-Galerkin projection-based model reduction with an optimized test space. In: AIAA Scitech 2020 Forum (2020) 1562. [Google Scholar]
  13. W. Dahmen, C. Plesken and G. Welper, Double greedy algorithms: reduced basis methods for transport dominated problems. ESAIM: M2AN 48 (2014) 623–663. [CrossRef] [EDP Sciences] [Google Scholar]
  14. J. Donea, A. Huerta, J.-P. Ponthot and A. Rodrguez-Ferran, Arbitrary Lagrangian-Eulerian methods. Encycl. Comput. Mech. Second Edition (2017) 1–23. [Google Scholar]
  15. R. Everson and L. Sirovich, Karhunen-Loeve procedure for gappy dat. JOSA A 12 (1995) 1657–1664. [CrossRef] [Google Scholar]
  16. C. Farhat, T. Chapman and P. Avery, Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102 (2015) 1077–1110. [Google Scholar]
  17. P. Gallinari, Y. Maday, M. Sangnier, O. Schwander and T. Taddei, Reduced basis’ acquisition by a learning process for rapid on-line approximation of solution to PDE’s: laminar flow past a backstep. Arch. Comput. Methods Eng. 25 (2018) 131–141. [Google Scholar]
  18. S. Glas, A.T. Patera and K. Urban, A reduced basis method for the wave equation. Int. J. Comput. Fluid Dyn. 34 (2020) 139–146. [Google Scholar]
  19. S. Grimberg, C. Farhat and N. Youkilis, On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows. J. Comput. Phys. 419 (2020) 109681. [Google Scholar]
  20. M. Guo and J.S. Hesthaven, Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput. Methods Appl. Mech. Eng. 341 (2018) 807–826. [Google Scholar]
  21. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer, New York (2016). [Google Scholar]
  22. J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Vol. 54 of Texts in Applied Mathematics Springer, New York (2007). [Google Scholar]
  23. C.W. Hirt, A.A. Amsden and J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (1974) 227–253. [Google Scholar]
  24. A. Iollo and D. Lombardi, Advection modes by optimal mass transfer. Phys. Rev. E 89 (2014) 022923. [Google Scholar]
  25. C.L. Lawson and R.J. Hanson, Solving Least Squares Problems. Siam 161 (1974). [Google Scholar]
  26. K. Lee and K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404 (2020) 108973. [Google Scholar]
  27. R.J. LeVeque, Numerical Methods for Conservation Laws. Vol. 3 of Lectures in Mathematics. ETH Zürich. Springer, Basel (1992). [Google Scholar]
  28. Y. Maday, A.T. Patera and D.V. Rovas, A blackbox reduced-basis output bound method for noncoercive linear problems, edited by D. Cioranescu and J.L. Lions. In: Studies in Mathematics and its Applications. Elsevier Science B. V.(2001) 533–569. [Google Scholar]
  29. J.E. Marsden and T.J. Hughes, Mathematical Foundations of Elasticity. Courier Corporation (1994). [Google Scholar]
  30. A. Mendible, S.L. Brunton, A.Y. Aravkin, W. Lowrie and J.N. Kutz, Dimensionality reduction and reduced-order modeling for traveling wave physics. Theor. Comput. Fluid Dyn. 34 (2020) 385–400. [Google Scholar]
  31. R. Mojgani and M. Balajewicz, Arbitrary Lagrangian Eulerian framework for efficient projection-based reduction of convection dominated nonlinear flows. In: APS Division of Fluid Dynamics Meeting Abstracts (2017). [Google Scholar]
  32. S. Mowlavi and T.P. Sapsis, Model order reduction for stochastic dynamical systems with continuous symmetries. SIAM J. Sci. Comput. 40 (2018) A1669–A1695. [Google Scholar]
  33. M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing. C. R. Math. 351 (2013) 901–906. [Google Scholar]
  34. M. Ohlberger and S. Rave, Reduced basis methods: success, limitations and future challenges. Preprint arXiv:1511.02021 (2015). [Google Scholar]
  35. A.T. Patera and M. Yano, An LP empirical quadrature procedure for parametrized functions. C. R. Math. 355 (2017) 1161–1167. [Google Scholar]
  36. B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling. SIAM J. Sci. Comput. 42 (2020) A2803–A2836. [Google Scholar]
  37. P.-O. Persson and J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. (2006) 112. [Google Scholar]
  38. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Vol. 92 of La Matematica per il 3+2. Springer, Cham (2016). [Google Scholar]
  39. J. Reiss, P. Schulze, J. Sesterhenn and V. Mehrmann, The shifted proper orthogonal decomposition: a mode decomposition for multiple transport phenomena. SIAM J. Sci. Comput. 40 (2018) A1322–A1344. [Google Scholar]
  40. J.A. Rice, Mathematical Statistics and Data Analysis. Cengage Learning (2006). [Google Scholar]
  41. D. Rim, B. Peherstorfer and K.T. Mandli, Manifold approximations via transported subspaces: model reduction for transport-dominated problems. Preprint arXiv:1912.13024 (2019). [Google Scholar]
  42. C.W. Rowley and J.E. Marsden, Reconstruction equations and the Karhunen-Loève expansion for systems with symmetry. Phys. D: Nonlinear Phenom. 142 (2000) 1–19. [Google Scholar]
  43. L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Math. 45 (1987) 561–571. [Google Scholar]
  44. D.B. Szyld, The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42 (2006) 309–323. [Google Scholar]
  45. T. Taddei, An offline/online procedure for dual norm calculations of parameterized functionals: empirical quadrature and empirical test spaces. Adv. Comput. Math. 45 (2019) 2429–2462. [Google Scholar]
  46. T. Taddei, A registration method for model order reduction: data compression and geometry reduction. SIAM J. Sci. Comput. 42 (2020) A997–A10274. [Google Scholar]
  47. T. Taddei, S. Perotto and A. Quarteroni, Reduced basis techniques for nonlinear conservation laws. ESAIM:M2AN 49 (2015) 787–814. [CrossRef] [EDP Sciences] [Google Scholar]
  48. K. Urban and A.T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. [Google Scholar]
  49. S. Volkwein, Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. see math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf (2011) 1025. [Google Scholar]
  50. G. Welper, Interpolation of functions with parameter dependent jumps by transformed snapshots. SIAM J. Sci. Comput. 39 (2017) A1225–A1250. [Google Scholar]
  51. H. Wendland, Scattered Data Approximation. Cambridge University Press (2004) 17. [Google Scholar]
  52. J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories. Numer. Math. 94 (2003) 195–202. [Google Scholar]
  53. M. Yano, A space-time Petrov-Galerkin certified reduced basis method: application to the Boussinesq equations. SIAM J. Sci. Comput. 36 (2014) A232–A266. [Google Scholar]
  54. M. Yano, Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear conservation laws. Adv. Comput. Math. 45 (2019) 2287–2320. [Google Scholar]
  55. M.J. Zahr and P.-O. Persson, An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions. J. Comput. Phys. 365 (2018) 105–134. [Google Scholar]
  56. M.J. Zahr, A. Shi and P.-O. Persson, Implicit shock tracking using an optimization-based high-order discontinuous galerkin method. J. Comput. Phys. 410 (2020) 109385. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you