Free Access
Issue
ESAIM: M2AN
Volume 55, Number 1, January-February 2021
Page(s) 283 - 299
DOI https://doi.org/10.1051/m2an/2020084
Published online 18 February 2021
  1. R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. [CrossRef] [Google Scholar]
  2. I. Babuška and T. Janik, The h-p version of the finite element method for parabolic equations. I. The p-version in time. Numer. Methods Part. Differ. Equ. 5 (1989) 363–399. [Google Scholar]
  3. I. Babuška and T. Janik, The h-p version of the finite element method for parabolic equations. II. The h-p version in time. Numer. Methods Part. Differ. Equ. 6 (1990) 343–369. [Google Scholar]
  4. P.B. Bochev and M.D. Gunzburger, Least-squares finite element methods. In: Vol. 166 of Applied Mathematical Sciences. Springer, New York (2009). [Google Scholar]
  5. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Texts in Applied Mathematics, Springer, New York (2008). [Google Scholar]
  6. P. Bringmann and C. Carstensen, h-adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates. Comput. Math. Appl. 74 (2017) 1923–1939. [Google Scholar]
  7. P. Bringmann, C. Carstensen and G. Starke, An adaptive least-squares FEM for linear elasticity with optimal convergence rates. SIAM J. Numer. Anal. 56 (2018) 428–447. [Google Scholar]
  8. Z. Cai, R. Lazarov, T.A. Manteuffel and S.F. McCormick, First-order system least squares for second-order partial differential equations. I. SIAM J. Numer. Anal. 31 (1994) 1785–1799. [Google Scholar]
  9. Z. Cai, B. Lee and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. [Google Scholar]
  10. Z. Cai, J. Korsawe and G. Starke, An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numer. Methods Part. Differ. Equ. 21 (2005) 132–148. [Google Scholar]
  11. C. Carstensen, Collective marking for adaptive least-squares finite element methods with optimal rates. Math. Comput. 89 (2020) 89–103. [Google Scholar]
  12. C. Carstensen and E.-J. Park, Convergence and optimality of adaptive least squares finite element methods. SIAM J. Numer. Anal. 53 (2015) 43–62. [Google Scholar]
  13. C. Carstensen, E.-J. Park and P. Bringmann, Convergence of natural adaptive least squares finite element methods. Numer. Math. 136 (2017) 1097–1115. [Google Scholar]
  14. M. Costabel, Boundary integral operators for the heat equation. Integral Equ. Oper. Theory 13 (1990) 498–552. [Google Scholar]
  15. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. In: Vol. 5 of Evolution Problems I. Springer-Verlag, Berlin (1992). [Google Scholar]
  16. D. Devaud and Ch Schwab, Space-time hp-approximation of parabolic equations. Calcolo 55 (2018) 23. [Google Scholar]
  17. A. Ern and J.-L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer, New York (2004). [Google Scholar]
  18. T. Führer and M. Karkulik, Space-time least-squares finite elements for parabolic equations. Preprint arXiv:1911.01942 (2019). [Google Scholar]
  19. T. Führer and D. Praetorius, A short note on plain convergence of adaptive least-squares finite element methods. Comput. Math. Appl. 80 (2020) 1619–1632. [Google Scholar]
  20. M.J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (2016) A2173–A2208. [Google Scholar]
  21. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986). [Google Scholar]
  22. M.D. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for control problems constrained by parabolic evolution equations. SIAM J. Contr. Optim. 49 (2011) 1150–1170. [Google Scholar]
  23. U. Langer, S.E. Moore and M. Neumüller, Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Mech. Eng. 306 (2016) 342–363. [Google Scholar]
  24. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  25. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  26. M. Neumüller and I. Smears, Time-parallel iterative solvers for parabolic evolution equations. SIAM J. Sci. Comput. 41 (2019) C28–C51. [Google Scholar]
  27. C.-M. Pfeiler and D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem. Math. Comput. 89 (2020) 2735–2752. [Google Scholar]
  28. N. Rekatsinas and R. Stevenson, An optimal adaptive tensor product wavelet solver of a space-time fosls formulation of parabolic evolution problems. Adv. Comput. Math. 45 (2018) 1031–1066. [Google Scholar]
  29. Ch Schwab and R.P. Stevenson, A space-time adaptive wavelet method for parabolic evolution problems. Math. Comput. 78 (2009) 1293–1318. [Google Scholar]
  30. Ch Schwab and R.P. Stevenson, Fractional space-time variational formulations of (Navier)–Stokes equations. SIAM J. Math. Anal. 49 (2017) 2442–2467. [CrossRef] [Google Scholar]
  31. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  32. K.G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31 (2011) 947–970. [Google Scholar]
  33. O. Steinbach, Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15 (2015) 551–566. [CrossRef] [Google Scholar]
  34. O. Steinbach and M. Zank, Coercive space-time finite element methods for initial boundary value problems, Berichte aus dem Institut für Angewandte Mathematik, Bericht 2018/7, Technische Universit ät Graz (2018). [Google Scholar]
  35. R.P. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. [Google Scholar]
  36. R.P. Stevenson, First-order system least squares with inhomogeneous boundary conditions. IMA J. Numer. Anal. 34 (2014) 863–878. [Google Scholar]
  37. R.P. Stevenson and R. van Venetië, Uniform preconditioners for problems of negative order. Math. Comput. 89 (2020) 645–674. [Google Scholar]
  38. R.P. Stevenson and J. Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. (2020). [Google Scholar]
  39. J. Storn, Topics in least-squares and discontinuous Petrov-Galerkin finite element analysis. Ph.D. thesis, Humboldt-Universität zu Berlin (2019). [Google Scholar]
  40. K. Urban and A.T. Patera, An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83 (2014) 1599–1615. [Google Scholar]
  41. I. Voulis and A. Reusken, A time dependent Stokes interface problem: Well-posedness and space-time finite element discretization. ESAIM:M2AN 52 (2018) 2187–2213. [EDP Sciences] [Google Scholar]
  42. J. Wloka, Partielle Differentialgleichungen: Sobolevräume und Randwertaufgaben. B.G. Teubner, Stuttgart (1982). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you