Free Access
Volume 55, Number 1, January-February 2021
Page(s) 301 - 328
Published online 18 February 2021
  1. G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. [CrossRef] [MathSciNet] [Google Scholar]
  2. G.D. Akrivis and V.A. Dougalis, Finite difference discretizations of some initial and boundary value problems with interface. Math. Comput. 56 (1991) 505–522. [Google Scholar]
  3. X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184 (2013) 2621–2633. [Google Scholar]
  4. C. Besse, Schéma de relaxation pour l’ équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I 326 (1998) 1427–1432. [Google Scholar]
  5. C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934–952. [Google Scholar]
  6. C. Besse, S. Descombes, G. Dujardin and I. Lacroix-Violet, Energy preserving methods for nonlinear Schrödinger equations. Preprint arXiv:1812.04890 (2018). [Google Scholar]
  7. J.J. Dongarra, J.R. Bunch, C.B. Moller and G.W. Stewart, LINPACK Users’ Guide. SIAM (1987). [Google Scholar]
  8. P. Henning and J. Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinet. Relat. Models 12 (2019) 1247–1271. [Google Scholar]
  9. O. Karakashian and Ch Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67 (1998) 479–499. [Google Scholar]
  10. T. Katsaounis and I. Kyza, A posteriori error analysis for evolution nonlinear Schrödinger equations up to the critical exponent. SIAM J. Numer. Anal. 56 (2018) 1405–1434. [Google Scholar]
  11. T. Katsaounis and D. Mitsotakis, On the reflection of solitons of the cubic nonlinear Schrödinger equation. Math. Methods Appl. Sci. 41 (2018) 1013–1018. [Google Scholar]
  12. O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs. AMS 23 (1968). [Google Scholar]
  13. M. Li, C. Huang and W. Ming, A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numerical Algorithms 83 (2020) 99–124. [Google Scholar]
  14. D. Oelz and S. Trabelsi, Analysis of a relaxation scheme for a nonlinear Schrödinger equation occurring in Plasma Physics. Math. Modell. Anal. 19 (2014) 257–274. [Google Scholar]
  15. G.E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Math. Model. Numer. Anal. 35 (2001) 389–405. [Google Scholar]
  16. G.E. Zouraris, Error estimation of the Besse Relaxation Scheme for a semilinear heat equation. Preprint arXiv:1812.09273 (2018). [Google Scholar]
  17. G.E. Zouraris, Error estimation of the Relaxation Finite Difference Scheme for the nonlinear Schrödinger equation. Preprint arXiv:2002.09605 (2020). [Google Scholar]
  18. G.E. Zouraris, A Relaxation/Finite Difference discretization of a 2D Semilinear Heat Equation over a rectangular domain. Preprint arXiv:2006.14092 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you