Free Access
Issue
ESAIM: M2AN
Volume 55, Number 2, March-April 2021
Page(s) 533 - 560
DOI https://doi.org/10.1051/m2an/2020085
Published online 15 March 2021
  1. R.A. Adams and J.J. Fournier, Sobolev Spaces. Elsevier (2003). [Google Scholar]
  2. B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. [Google Scholar]
  3. V. Anaya, M. Bendahmane, D. Mora and M. Sepúlveda, A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology. IMA J. Numer. Anal. 40 (2020) 1544–1576. [Google Scholar]
  4. P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
  5. P.F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. [Google Scholar]
  6. E. Artioli, S. de Miranda, C. Lovadina and L. Patruno, A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. [Google Scholar]
  7. K. Atkinson and W. Han, Theoretical Numerical Analysis. Texts in Applied Mathematics. Springer, Dordrecht (2009). [Google Scholar]
  8. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  9. L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [Google Scholar]
  10. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [Google Scholar]
  11. L. Beirão da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. [Google Scholar]
  12. L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini and A. Russo, Virtual element approximation of 2D magnetostatic problems. Comput. Methods Appl. Mech. Eng. 327 (2017) 173–195. [Google Scholar]
  13. L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. [Google Scholar]
  14. L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini and A. Russo, Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mech. Engrg. 332 (2018) 343–362. [Google Scholar]
  15. L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. [Google Scholar]
  16. L. Beirão da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. [Google Scholar]
  17. P.E. Bjørstad and B.P. Tjøstheim, High precision solutions of two fourth order eigenvalue problems. Computing 63 (1999) 97–107. [Google Scholar]
  18. H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2 (1980) 556–581. [Google Scholar]
  19. S.C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. [Google Scholar]
  20. S.C. Brenner, M. Neilan, A. Reiser and L.-Y. Sung, A C0 interior penalty method for a von Kármán plate. Numer. Math. 135 (2017) 803–832. [Google Scholar]
  21. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (2008). [Google Scholar]
  22. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011). [Google Scholar]
  23. F. Brezzi, Finite element approximations of the von Kármán equations. RAIRO Anal. Numér. 12 (1978) 303–312. [MathSciNet] [Google Scholar]
  24. F. Brezzi and L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. [Google Scholar]
  25. E. Cáceres and G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. [Google Scholar]
  26. A. Cangiani, P. Chatzipantelidis, G. Diwan and E.H. Georgoulis, Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. 40 (2020) 2450–2472. [Google Scholar]
  27. A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. [Google Scholar]
  28. C. Carstensen, G. Mallik and N. Nataraj, A priori and a posteriori error control of discontinuous galerkin finite element methods for the von kármán equations. IMA J. Numer. Anal. 39 (2018) 167–200. [Google Scholar]
  29. C. Chinosi, Virtual elements for the Reissner-Mindlin plate problem. Numer. Methods Part. Differ. Equ. 34 (2018) 1117–1144. [Google Scholar]
  30. C. Chinosi and L.D. Marini, Virtual element method for fourth order problems: L2-estimates. Comput. Math. Appl. 72 (2016) 1959–1967. [Google Scholar]
  31. P.G. Ciarlet, Mathematical Elasticity. Vol. II. Theory of Plates. North-Holland, Amsterdam (1997). [Google Scholar]
  32. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002). [Google Scholar]
  33. P.G. Ciarlet and P. Rabier, Les équations de von Kármán. In: Vol. 826 of Lecture Notes in Mathematics. Springer, Berlin (1980). [Google Scholar]
  34. A. Ern and G.L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [Google Scholar]
  35. G.N. Gatica, M. Munar and F.A. Sequeira, A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci. 28 (2018) 2719–2762. [Google Scholar]
  36. G.N. Gatica, M. Munar and F.A. Sequeira, A mixed virtual element method for the Boussinesq problem on polygonal mesh. J. Comput. Math. To appear in: DOI: 10.4208/jcm.2001-m2019-0187. [Google Scholar]
  37. F. Gazzola and Y. Wang, Modeling suspension bridges through the von Kármán quasilinear plate equations. Contrib. Nonlinear Elliptic Equ. Syst. 86 (2015) 269–297. [Google Scholar]
  38. G.H. Knightly, An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27 (1967) 233–242. [Google Scholar]
  39. G. Mallik and N. Nataraj, Conforming and nonconforming finite element methods for canonical von Kármán equations. Int. J. Adv. Eng. Sci. Appl. Math. 7 (2015) 86–95. [Google Scholar]
  40. G. Mallik and N. Nataraj, Conforming finite element methods for the von Kármán equations. Adv. Comput. Math. 42 (2016) 1031–1054. [Google Scholar]
  41. G. Mallik and N. Nataraj, A nonconforming finite element approximation for the von Karman equations. ESAIM:M2AN 50 (2016) 433–454. [CrossRef] [EDP Sciences] [Google Scholar]
  42. L. Mascotto, I. Perugia and A. Pichler, Non-conforming harmonic virtual element method: h- and p-versions. J. Sci. Comput. 77 (2018) 1874–1908. [Google Scholar]
  43. D. Mora and R. Rodríguez, A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78 (2009) 1891–1917. [Google Scholar]
  44. D. Mora and I. Velásquez, Virtual element for the buckling problem of Kirchhoff-Love plates. Comput. Methods Appl. Mech. Eng. 360 (2020) 112687. [Google Scholar]
  45. D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates. ESAIM:M2AN 52 (2018) 1437–1456. [CrossRef] [EDP Sciences] [Google Scholar]
  46. I. Perugia, P. Pietra and A. Russo, A plane wave virtual element method for the Helmholtz problem. ESAIM:M2AN 50 (2016) 783–808. [CrossRef] [EDP Sciences] [Google Scholar]
  47. G. Vacca, An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 194. [Google Scholar]
  48. T. Von Kármán, Festigkeitsprobleme im maschinenbau. Encycl. der Mathematischen Wissenschaften. Leipzig IV/4 (1910) 348–352. [Google Scholar]
  49. Y. Wang, An evolution von Kármán equation modeling suspension bridges. Nonlinear Anal. 169 (2018) 59–78. [Google Scholar]
  50. P. Wriggers, W.T. Rust and B.D. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you