Free Access
Volume 55, Number 2, March-April 2021
Page(s) 561 - 594
Published online 31 March 2021
  1. A.C. Antoulas, Approximation of Large-Scale Dynamical Systems. In: Vol. 6 of Adv. Des. Control. SIAM Publications, Philadelphia, PA (2005). [Google Scholar]
  2. A.C. Antoulas and D.C. Sorensen, Approximation of large-scale dynamical systems: an overview. Int. J. Appl. Math. Comput. Sci. 11 (2001) 1093–1121. [Google Scholar]
  3. A.C. Antoulas, D.C. Sorensen and S. Gugercin, A survey of model reduction methods for large-scale systems. Contemp. Math. 280 (2001) 193–219. [Google Scholar]
  4. A.C. Antoulas, C.A. Beattie and S. Gugercin, Interpolatory model reduction of large-scale dynamical systems. In: Efficient Modeling and Control of Large-Scale Systems, edited by J. Mohammadpour and K.M. Grigoriadis. Springer US (2010) 3–58. [Google Scholar]
  5. A.C. Antoulas, C. Beattie and S. Gugercin, Interpolatory methods for model reduction. In: Vol. 6 of Computational Science and Engineering 21. Philadelphia, PA (2020). [Google Scholar]
  6. U. Baur, C.A. Beattie, P. Benner and S. Gugercin, Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33 (2011) 2489–2518. [CrossRef] [Google Scholar]
  7. U. Baur, P. Benner and L. Feng, Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21 (2014) 331–358. [Google Scholar]
  8. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Martini and M. Ohlberger, Comparison of methods for parametric model order reduction of time-dependent problems. In: Model Reduction and Approximation: Theory and Algorithms, edited by P. Benner, A. Cohen, M. Ohlberger and K. Willcox. SIAM (2017) 377–407. [Google Scholar]
  9. P. Benner, M. Hinze and E.J.W. ter Maten, editors. Model reduction for circuit simulation. In: Vol. 74 of Lect. Notes Electr. Eng . Springer, Dodrecht (2011). [Google Scholar]
  10. P. Benner, S. Gugercin and K. Willcox, A survey of model reduction methods for parametric systems. SIAM Rev. 57 (2015) 483–531. [CrossRef] [Google Scholar]
  11. P. Benner, A. Cohen, M. Ohlberger and K. Willcox, editors. Model Reduction and Approximation: Theory and Algorithms. Computational Science & Engineering. SIAM Publications, Philadelphia, PA (2017). [Google Scholar]
  12. F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. Springer International Publishing (2014). [Google Scholar]
  13. V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60 (2011) 546–560. [Google Scholar]
  14. V. Druskin, V. Simoncini and M. Zaslavsky, Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35 (2014) 476–498. [Google Scholar]
  15. L. Feng and P. Benner, A robust algorithm for parametric model order reduction based on implicit moment matching, edited by A. Quarteroni and G. Rozza. In: Vol. 9 of Reduced Order Methods for Modeling and Computational Reduction, Chap. 6, MS&A Series. Springer-Verlag, Berlin, Heidelberg, NY (2014) 159–186. [Google Scholar]
  16. L. Feng and P. Benner, A new error estimator for reduce-order modeling of linear parametric systems. IEEE Trans. Microw. Theory Techn. 67 (2019) 4848–4859. [Google Scholar]
  17. L. Feng, A.C. Antoulas and P. Benner, Some a posteriori error bounds for reduced order modelling of (non-)parametrized linear systems. ESAIM: M2AN 51 (2017) 2127–2158. [EDP Sciences] [Google Scholar]
  18. G. Fotyga, M. Czarniewska, A. Lamecki and M. Mrozowski, Reliable greedy multipoint model-order reduction techniques for finite-element analysis. IEEE Trans. Antennas Propagat. 17 (2018) 821–824. [Google Scholar]
  19. A. Grimm, Parametric dynamical systems: Transient analysis and data driven modeling. Ph.D. thesis, Virginia Tech (2018). [Google Scholar]
  20. S. Hain, M. Ohlberger, M. Radic and K. Urban, A hierarchical a-posteriori error estimator for the reduced basis method. Cornell University. Preprint: arXiv:1802.03298 (2018). [Google Scholar]
  21. M.W. Hess, S. Grundel and P. Benner, Estimating the inf-sup constant in reduced basis methods for time-harmonic Maxwell’s equations. IEEE Trans. Microw. Theory Techn. 63 (2015) 3549–3557. [Google Scholar]
  22. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer, Cham (2016). [Google Scholar]
  23. M. Hund, P. Mlinarić and J. Saak, An H2L2-optimal model order reduction approach for parametric linear time-invariant systems. Appl. Math. Mech. 18 (2018). [Google Scholar]
  24. D. Huynh, G. Rozza, S. Sen and A. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup lower bounds. C.R. Acad. Sci. Paris 345 (2007) 473–478. [Google Scholar]
  25. A. Monje-Real and V. de la Rubia, Electric field integral equation for fast frequency sweep for scattering of nonpenetrable objects via the reduced-basis method. IEEE Trans. Antennas Propagat. 68 (2020) 6232–6244. [Google Scholar]
  26. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229–275. [Google Scholar]
  27. B. Salimbahrami, R. Eid and B. Lohmann, Model reduction by second order Krylov subspaces: extensions, stability and proportional damping. In: IEEE Conference on Computer Aided Control Systems Design. Springer International Publishing (2006) 2997–3002. [Google Scholar]
  28. A. Schmidt, D. Wittwar and B. Haasdonk, Rigorous and effective a-posteriori error bounds for nonlinear problems-application to RB methods. SimTech, University of Stuttgart (2018). [Google Scholar]
  29. K. Smetana, O. Zahm and A.T. Patera, Randomized residual-based error estimators for parametrized equations. SIAM J. Sci. Comput. 41 (2019) A900–A926. [Google Scholar]
  30. M. Yano, A space-time Petrov-Galerkin certified reduced basis method: application to the Boussinesq equations. SIAM J. Sci. Comput. 36 (2014) 232–266. [Google Scholar]
  31. Y. Zhang, L. Feng, S. Li and P. Benner, An efficient output error estimation for model order reduction of parametrized evolution equations. SIAM J. Sci. Comput. 37 (2015) B910–B936. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you