Free Access
Volume 55, Number 2, March-April 2021
Page(s) 595 - 625
Published online 01 April 2021
  1. G. Acosta, Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math. 135 (2001) 91–109. [Google Scholar]
  2. G. Acosta, F.M. Bersetche and J.P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74 (2017) 784–816. [Google Scholar]
  3. R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). [Google Scholar]
  4. M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327 (2017) 4–35. [Google Scholar]
  5. M. Ainsworth and W. McLean, Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer. Math. 93 (2003) 387–413. [Google Scholar]
  6. M. Ainsworth, W. McLean and T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901–1932. [Google Scholar]
  7. T. Apel, Anisotropic finite elements: local estimates and applications. In: Advances in Numerical Mathematics. Teubner Stuttgart (1999). [Google Scholar]
  8. T. Apel, Interpolation of non-smooth functions on anisotropic finite element meshes. ESAIM: M2AN 33 (1999) 1149–1185. [CrossRef] [EDP Sciences] [Google Scholar]
  9. M. Arioli and D. Loghin, Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47 (2009) 2924–2951. [Google Scholar]
  10. M. Aurada, M. Feischl, J. Kemetmüller, M. Page and D. Praetorius, Each H1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd. ESAIM: M2AN 47 (2013) 1207–1235. [EDP Sciences] [Google Scholar]
  11. M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations. Appl. Numer. Math. 95 (2015) 15–35. [Google Scholar]
  12. S. Badia, On stabilized finite element methods based on the Scott-Zhang projector. Circumventing the inf-sup condition for the Stokes problem. Comput. Methods Appl. Mech. Eng. 247/248 (2012) 65–72. [Google Scholar]
  13. R.E. Bank and L.R. Scott, On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal. 26 (1989) 1383–1394. [Google Scholar]
  14. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. [Google Scholar]
  15. T. Bærland, M. Kuchta and K.-A. Mardal, Multigrid methods for discrete fractional Sobolev spaces. SIAM J. Sci. Comput. 41 (2019) A948–A972. [Google Scholar]
  16. A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola and A.J. Salgado, Numerical methods for fractional diffusion. Comput. Vis. Sci. 19 (2018) 19–46. [Google Scholar]
  17. J.P. Borthagaray, W.P. Li and R.H. Nochetto, Linear and nonlinear fractional elliptic problems, 75 years of mathematics of computation. In: Vol. 754 of Contemp. Math. Amer. Math. Soc., Providence, RI (2020) 69–92. [Google Scholar]
  18. J. Bramble, J. Pasciak and J. Xu, Parallel multilevel preconditioners. Math. Comput. 55 (1991) 1–22. [Google Scholar]
  19. J.H. Bramble, J.E. Pasciak and P.S. Vassilevski, Computational scales of Sobolev norms with application to preconditioning. Math. Comput. 69 (2000) 463–480. [Google Scholar]
  20. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 2nd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York (2002). [Google Scholar]
  21. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Part. Differ. Equ. 32 (2007) 1245–1260. [Google Scholar]
  22. C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: M2AN 33 (1999) 1187–1202. [CrossRef] [EDP Sciences] [Google Scholar]
  23. C. Carstensen and J. Hu, Hanging nodes in the unifying theory of a posteriori finite element error control. J. Comput. Math. 27 (2009) 215–236. [Google Scholar]
  24. L. Chen, R.H. Nochetto and J. Xu, Optimal multilevel methods for graded bisection grids. Numer. Math. 120 (2012) 1–34. [Google Scholar]
  25. L. Chen, R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys. 293 (2015) 339–358. [Google Scholar]
  26. L. Chen, R.H. Nochetto, E. Otárola and A.J. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional diffusion. Math. Comput. 85 (2016) 2583–2607. [Google Scholar]
  27. P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
  28. P. Ciarlet, Jr, Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21 (2013) 173–180. [Google Scholar]
  29. A. Cohen, Numerical analysis of wavelet methods. In: Vol. 32 of Studies in Mathematics Applications. North-Holland Publishing Co., Amsterdam (2003). [Google Scholar]
  30. W. Dahmen, B. Faermann, I. Graham, W. Hackbusch and S. Sauter, Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method. Math. Comput. 73 (2004) 1107–1138. [Google Scholar]
  31. R.A. DeVore and G.G. Lorentz, Constructive approximation. In: Vol. 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1993). [Google Scholar]
  32. L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16 (2016) 33–68. [CrossRef] [Google Scholar]
  33. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [Google Scholar]
  34. M. Dryja and O.B. Widlund, Multilevel additive methods for elliptic finite element problems, Parallel algorithms for partial differential equations (Kiel, 1990). In: Vol. 31 of Notes Numer. Fluid Mech . Friedr. Vieweg, Braunschweig (1991) 58–69. [Google Scholar]
  35. A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. [EDP Sciences] [Google Scholar]
  36. R.S. Falk and R. Winther, The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math. 1–32 (2015). [Google Scholar]
  37. M. Faustmann, J.M. Melenk and D. Praetorius, Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comput. 51 (2013) 1327–1348. [Google Scholar]
  38. M. Feischl, T. Führer, D. Praetorius and E.P. Stephan, Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. Calcolo 54 (2017) 367–399. [Google Scholar]
  39. H. Gimperlein, J. Štoček and C. Urzúa-Torres, Optimal operator preconditioning for pseudodifferential boundary problems. Comput. Math. App. 79 (2020) 3516–3530. [Google Scholar]
  40. V. Girault and L.R. Scott, Hermite interpolation of nonsmooth functions preserving boundary conditions. Math. Comput. 71 (2002) 1043–1074. [Google Scholar]
  41. R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699–706. [Google Scholar]
  42. M. Karkulik and J.M. Melenk, Local high-order regularization and applications to hp-methods. Comput. Math. Appl. 70 (2015) 1606–1639. [Google Scholar]
  43. M. Karkulik, D. Pavlicek and D. Praetorius, On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection. Constr. Approx. 38 (2013) 213–234. [Google Scholar]
  44. J. Li, J.M. Melenk, B. Wohlmuth and J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. [Google Scholar]
  45. M. Maischak, A multilevel additive Schwarz method for a hypersingular integral equation on an open curve with graded meshes. Appl. Numer. Math. 59 (2009) 2195–2202. [Google Scholar]
  46. A.M. Matsokin and S.V. Nepomnyaschikh, A Schwarz alternating method in a subspace. Soviet Math. 29 (1985) 78–84. [Google Scholar]
  47. P. Oswald, Multilevel Finite Element Approximation. Teubner Skripten zur Numerik, Teubner (1994). [Google Scholar]
  48. A. Rand, Average interpolation under the maximum angle condition. SIAM J. Numer. Anal. 50 (2012) 2538–2559. [Google Scholar]
  49. R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung groß er vollbesetzter Gleichungssysteme. [Analysis-based methods for the efficient solution of large nonsparse systems of equations], In: Advances in Numerical Mathematics. Teubner Stuttgart, Stuttgart (1998). [Google Scholar]
  50. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  51. R. Stevenson, Stable three-point wavelet bases on general meshes. Numer. Math. 80 (1998) 131–158. [Google Scholar]
  52. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. [Google Scholar]
  53. R. Stevenson and R. van Venetië, Uniform preconditioners for problems of positive order. Comput. Math. Appl. 79 (2020) 3516–3530. [Google Scholar]
  54. L. Tartar, An introduction to Sobolev spaces and interpolation spaces. In: Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007). [Google Scholar]
  55. A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory. In: Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). [Google Scholar]
  56. T. Tran and E.P. Stephan, Additive Schwarz methods for the h-version boundary element method. Appl. Anal. 60 (1996) 63–84. [Google Scholar]
  57. T. Tran, E.P. Stephan and P. Mund, Hierarchical basis preconditioners for first kind integral equations. Appl. Anal. 65 (1997) 353–372. [Google Scholar]
  58. T. Tran, E.P. Stephan and S. Zaprianov, Wavelet-based preconditioners for boundary integral equations. Adv. Comput. Math. 9 (1998) 233–249. [Google Scholar]
  59. X. Zhang, Multilevel Schwarz methods. Numer. Math. 63 (1992) 521–539. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you