Free Access
Issue
ESAIM: M2AN
Volume 55, Number 3, May-June 2021
Page(s) 1067 - 1101
DOI https://doi.org/10.1051/m2an/2020088
Published online 08 June 2021
  1. M. Aizenman and T.A. Bak, Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys. 65 (1979) 203–230. [Google Scholar]
  2. W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-valued laplace transforms and Cauchy Problems. In: Monographs in Mathematics. Birkhauser Verlag (2001). [Google Scholar]
  3. H. Babovsky, On a Monte Carlo approach to the Smoluchowski equations,. Monte Carlo Methods App. 5 (1999) 1–18. [Google Scholar]
  4. G. Baird, Mixed discrete–continuous fragmentation equations. Ph.D. thesis, University of Oxford (2017). https://ora.ox.ac.uk/objects/uuid:311da0da-6801-4120-9129-d95786a153b6. [Google Scholar]
  5. G. Baird and E. Süli, A mixed discrete–continuous fragmentation model. J. Math. Anal. App. 473 (2019) 273–296. [Google Scholar]
  6. J. Banasiak, On an extension of Kato-Voigt perturbation theorem for substochastic semigroups and its application. Taiwanese J. Math. 5 (2001) 169–191. [Google Scholar]
  7. J. Banasiak, Transport processes with coagulation and strong fragmentation. Discrete Contin. Dyn. Syst. B 17 (2012) 445–472. [Google Scholar]
  8. J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications. Springer-Verlag, London (2006). [Google Scholar]
  9. J. Banasiak and W. Lamb, On the application of substochastic semigroup theory to fragmentation models with mass loss. J. Math. Anal. Appl. 284 (2003) 9–30. [Google Scholar]
  10. J. Banasiak and W. Lamb, Coagulation, fragmentation and growth processes in a size structured population. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 563–585. [Google Scholar]
  11. J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation–fragmentation equations with unbounded rates. J. Math. Anal. App. 391 (2012) 312–322. [Google Scholar]
  12. J. Banasiak and W. Lamb, The discrete fragmentation equations: semigroups, compactness and asynchronous exponential growth. Kinetic Related Models 5 (2012) 223–236. [Google Scholar]
  13. J. Banasiak and W. Lamb, On the existence of moments of solutions to fragmentation equations. J. Math. Anal. App. 413 (2014) 1017–1029. [Google Scholar]
  14. J. Banasiak, W. Lamb and M. Langer, Strong fragmentation and coagulation with power-law rates. J. Eng. Math. 82 (2013) 199–215. [Google Scholar]
  15. J. Banasiak, L.O. Joel and S. Shindin, Analysis and simulations of the discrete fragmentation equation with decay. Math. Methods Appl. Sci. 41 (2018) 6530–6545. [Google Scholar]
  16. J.C. Barrett and J.S. Jheeta, Improving the accuracy of the moments method for solving the aerosol general dynamic equation. J. Aerosol Sci. 27 (1996) 1135–1142. [Google Scholar]
  17. P.N. Blair, W. Lamb and I.W. Stewart, Coagulation and fragmentation with discrete mass loss. J. Math. Anal. Appl. 329 (2007) 1285–1302. [Google Scholar]
  18. J.P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation–fragmentation equations. Math. Comp. 77 (2008) 851–882. [Google Scholar]
  19. J.A. Canizo, Evolution equations in a Banach space (2006). http://canizo.org/tex/evolution.pdf. [Google Scholar]
  20. M.E. Costas, M. Moreau and L. Vicente, Some analytical and numerical solutions for colloidal aggregation with fragmentation. J. Phys. A: Math. General 28 (1995) 2981–2994. [Google Scholar]
  21. P. Degond and M. Engel, Numerical approximation of a coagulation–fragmentation model for animal group size statistics. Netw. Heterogeneous Media 12 (2017) 217–243. [Google Scholar]
  22. P. Degond, J.-G. Liu and R.L. Pego, Coagulation–fragmentation model for animal group-size statistics. J. Nonlinear Sci. 27 (2017) 379–424. [Google Scholar]
  23. J. Drazkowska, F. Windmark and C.P. Dullemond, Modeling dust growth in protoplanetary disks: the breakthrough case. Astron. Astrophys. 567 (2014) A38. [Google Scholar]
  24. A. Eibeck and W. Wagner, An efficient stochastic algorithm for studying coagulation dynamics and gelation phenomena. SIAM J. Sci. Comput. 22 (2000) 802–821. [Google Scholar]
  25. K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000). [Google Scholar]
  26. F. Filbet, An asymptotically stable scheme for diffusive coagulation–fragmentation models. Commun. Math. Sci. 6 (2008) 257–280. [Google Scholar]
  27. F. Filbet and P. Laurençot, Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25 (2004) 2004–2028. [Google Scholar]
  28. A.F. Filippov, On the distribution of the sizes of particles which undergo splitting. Theory Probab. App. 6 (1961) 275–294. [Google Scholar]
  29. I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer, New York (2007). [Google Scholar]
  30. L. Forestier-Coste and S. Mancini, A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence. SIAM J. Sci. Comput. 34 (2012) B840–B860. [Google Scholar]
  31. F. Guias, A Monte Carlo approach to the Smoluchowski equations. Monte Carlo Methods App. 3 (1997) 313–326. [Google Scholar]
  32. A. Johansen, F. Brauer, C. Dullemond and H. Klahr, A coagulation–fragmentation model for the turbulent growth and destruction of preplanetesimals. Astron. Astrophys. 486 (2008) 597–611. [Google Scholar]
  33. J. Kumar, J. Saha and E. Tsotsas, Development and convergence analysis of a finite volume scheme for solving breakage equation. SIAM J. Numer. Anal. 53 (2015) 1672–1689. [Google Scholar]
  34. R. Kumar, Numerical analysis of finite volume schemes for population balance equations. Ph.D. thesis, Otto-von-Guericke University Magdeburg (2010). https://www.researchgate.net/publication/50870176_Numerical_analysis_for_finite_volume_schemes_for_population_balance_equations. [Google Scholar]
  35. S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization–I. A fixed pivot technique. Chem. Eng. Sci. 51 (1996) 1311–1332. [Google Scholar]
  36. R. Kumar, J. Kumar and G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Models Methods Appl. Sci. 23 (2013) 1235–1273. [Google Scholar]
  37. R. Kumar, J. Kumar and G. Warnecke, Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinet. Related Models 7 (2014) 713–737. [Google Scholar]
  38. W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation. Math. Meth. Appl. Sci. 27 (2004) 703–721. [Google Scholar]
  39. P. Laurençot, Weak compactness techniques and coagulation equations. In: Vol. 2126 of Evolutionary Equations with Applications in Natural Sciences. Lecture Notes in Math. Springer International Publishing (2015) 199–253. [Google Scholar]
  40. E.H. Lieb and M. Loss, Analysis. Graduate Studies in Mathematics. American Mathematical Society (2001). [Google Scholar]
  41. A.C. McBride, A.L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation–fragmentation equation. Phys. D: Nonlinear Phenom. 239 (2010) 1436–1445. [Google Scholar]
  42. E.D. McGrady and R.M. Ziff, Shattering transition in fragmentation. Phys. Rev. Lett. 58 (1987) 892–895. [Google Scholar]
  43. D.J. McLaughlin, W. Lamb and A.C. McBride, An existence and uniqueness theorem for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28 (1997) 1173–1190. [Google Scholar]
  44. D.J. McLaughlin, W. Lamb and A.C. McBride, A semigroup approach to fragmentation models. SIAM J. Math. Anal. 28 (1997) 1158–1172. [Google Scholar]
  45. R. Nagel, Towards a matrix theory for unbounded operator matrices. Math. Z. 201 (1989) 57–68. [Google Scholar]
  46. M. Nicmanis and M.J. Hounslow, A finite element analysis of the steady state population balance equation for particulate systems: aggregation and growth. Comput. Chem. Eng. 20 (1996) S261–S266. [Google Scholar]
  47. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983). [Google Scholar]
  48. S. Qamar and G. Warnecke, Solving population balance equations for two-component aggregation by a finite volume scheme. Chem. Eng. Sci. 62 (2007) 679–693. [Google Scholar]
  49. S. Qamar, G. Warnecke and M.P. Elsner, On the solution of population balances for nucleation, growth, aggregation and breakage processes. Chem. Eng. Sci. 64 (2009) 2088–2095. [Google Scholar]
  50. J. Saha, N. Das, J. Kumar and A. Bück, Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinet. Related Models 12 (2019) 79–103. [Google Scholar]
  51. A.P. Smirnov, S.A. Matveev, D.A. Dmitry, A. Zheltkov and E.E. Tyrtyshnikov, Fast and accurate finite-difference method solving multicomponent Smoluchowski coagulation equation with source and sink terms. Proc. Comput. Sci. 80 (2016) 2141–2146. [Google Scholar]
  52. L. Smith, W. Lamb, M. Langer and A.C. McBride, Discrete fragmentation with mass loss. J. Evol. Equ. 12 (2012) 181–201. [Google Scholar]
  53. I.W. Stewart, A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels. Math. Methods Appl. Sci. 11 (1989) 627–648. [Google Scholar]
  54. J. Voigt, On substochastic C0-semigroups and their generators. Trans. Theo. Stat. Phys. 16 (1987) 453–466. [Google Scholar]
  55. R.M. Ziff, Kinetics of polymerization. J. Stat. Phys. 23 (1980) 241–263. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you