Free Access
Issue
ESAIM: M2AN
Volume 55, Number 3, May-June 2021
Page(s) 1103 - 1131
DOI https://doi.org/10.1051/m2an/2021020
Published online 08 June 2021
  1. O. Akanni, H. Nasr-El-Din and D. Gusain, A computational Navier-Stokes fluid-dynamics-simulation study of wormhole propagation in carbonate-matrix acidizing and analysis of factors influencing the dissolution process. SPE J. 22 (2017) 187962. [Google Scholar]
  2. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267–279. [Google Scholar]
  3. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39 (2001) 264–285. [Google Scholar]
  4. P. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland (1975). [Google Scholar]
  5. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [Google Scholar]
  6. C. Fredd and H. Fogler, Influence of transport and reaction on wormhole formation in porous media. Fluid Mech. Transp. Phenom. 44 (1998) 1933–1949. [Google Scholar]
  7. F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux and M. Quintard, On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457 (2002) 213–254. [Google Scholar]
  8. T.H. Gronwall, Note on the derivative with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919) 292–296. [Google Scholar]
  9. H. Guo, F. Yu and Y. Yang, Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J. Sci. Comput. 71 (2017) 615–633. [Google Scholar]
  10. H. Guo, L. Tian, Z. Xu, Y. Yang and N. Qi, High-order local discontinuous Galerkin method for simulating wormhole propagation. J. Comput. Appl. Math. 350 (2019) 247–261. [Google Scholar]
  11. J. Kou, S. Sun and Y. Wu, Mixed finite element-based fully conservative methods for simulating wormhole propagation. Comput. Methods Appl. Mech. Eng. 298 (2016) 279–302. [Google Scholar]
  12. X. Li and H. Rui, Characteristic block-centered finite difference method for simulating incompressible wormhole propagation. Comput. Math. App. 73 (2017) 2171–2190. [Google Scholar]
  13. X. Li and H. Rui, Block-centered finite difference method for simulating compressible wormhole propagation. J. Sci. Comput. 74 (2017) 1115–1145. [Google Scholar]
  14. X. Li and H. Rui, A fully conservative finite difference method for simulating Darcy-Forchheimer compressible wormhole propagation. Numer. Algorithms (2018). [Google Scholar]
  15. X. Li, C.-W. Shu and Y. Yang, Local discontinuous Galerkin method for the Keller-Segel chemotaxis model. J. Sci. Comput. 73 (2017) 943–967. [Google Scholar]
  16. M. Liu, S. Zhang, J. Mou and F. Zhou, Wormhole propagation behavior under reservoir condition in carbonate acidizing. Transp. Porous Media 96 (2013) 203–220. [Google Scholar]
  17. P. Maheshwari and V. Balakotaiah, 3D Simulation of Carbonate Acidization with HCl: Comparison with Experiments. Society of Petroleum Engineers (2013). [Google Scholar]
  18. S. Mauran, L. Rigaud and O. Coudevylle, Application of the carman-kozeny correlation to a highporosity and anisotropic consolidated medium: The compressed expanded natural graphite. Transp. Porous Media 43 (2001) 355–376. [Google Scholar]
  19. M. Panga and M. Ziauddin, Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51 (2005) 3231–3248. [Google Scholar]
  20. A. Smirnov, K. Fedorov and A. Shevelev, Modeling the acidizing of a carbonate formation. Fluid Dyn. 45 (2010) 779–786. [Google Scholar]
  21. P. Szymczak and A. Ladd, Wormhole formation in dissolving fractures. J. Gophys. Res. 114 (2009) B06203. [Google Scholar]
  22. L. Tian, H. Guo, R. Jia and Y. Yang, An h-adaptive local discontinuous galerkin method for simulating wormhole propagation with Darcy-Forcheiner model. J. Sci. Comput. 82 (2020) 43. [Google Scholar]
  23. H. Wang, C.-W. Shu and Q. Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53 (2015) 206–227. [Google Scholar]
  24. H. Wang, C.-W. Shu and Q. Zhang, Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272 (2016) 237–258. [Google Scholar]
  25. H. Wang, S. Wang, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with implicit-explicit time marching for multi-dimensional convectiondiffusion problems. ESAIM: M2AN 50 (2016) 1083–1105. [CrossRef] [EDP Sciences] [Google Scholar]
  26. H. Wang, J. Zheng, F. Yu, H. Guo and Q. Zhang, Local Discontinuous Galerkin method with implicit-explicit time marching for incompressible miscible displacement problem in porous media. J. Sci. Comput. 78 (2018) 1–28. [Google Scholar]
  27. H. Wang, Y. Liu, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Math. Comput. 88 (2019) 91–121. [Google Scholar]
  28. H. Wang, Q. Zhang, S. Wang and C.W. Shu, Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Sci. China (Math.) 063 (2020) 183–204. [Google Scholar]
  29. W. Wei, A. Varavei and K. Sepehrnoori, Modeling and analysis on the effect of two-phase flow on wormhole propagation in carbonate acidizing. SPE J. 22 (2017). [Google Scholar]
  30. Y. Wu, A. Salama and S. Sun, Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework. Comput. Geotech. 69 (2015) 564–577. [Google Scholar]
  31. Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for nonlinear Schr odinger equations. J. Comput. Phys. 205 (2005) 72–97. [Google Scholar]
  32. Y. Xu and C.-W. Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196 (2007) 3805–3822. [Google Scholar]
  33. Z. Xu, Y. Yang and H. Guo, High-Order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes. J. Comput. Phys. 390 (2019) 323–341. [Google Scholar]
  34. J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17 (2002) 27–47. [Google Scholar]
  35. J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. [Google Scholar]
  36. F. Yu, H. Guo, N. Chuenjarern and Y. Yang, Conservative local discontinuous Galerkin method for compressible miscible displacements in porous media. J. Sci. Comput. 73 (2017) 1249–1275. [Google Scholar]
  37. J. Zhang, X. Shen, H. Guo, H. Fu and H. Han, Characteristic splitting mixed finite element analysis of compressible wormhole propagation. Appl. Numer. Math. 147 (2020) 66–87. [Google Scholar]
  38. C. Zhao, B.E. Hobbs, P. Hornb, A. Ord, S. Peng and L. Liu, Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Methods Geomech. 32 (2008) 1107–1130. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you