Open Access
Issue
ESAIM: M2AN
Volume 55, Number 4, July-August 2021
Page(s) 1271 - 1321
DOI https://doi.org/10.1051/m2an/2021024
Published online 07 July 2021
  1. Y. Achdou, C. Japhet, F. Nataf and Y. Maday, A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case. Numer. Math. 92 (2002) 593–620. [Google Scholar]
  2. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D-meshes. Numer. Methods PDEs 23 (2007) 145–195. [Google Scholar]
  3. E. Blayo, D. Cherel and A. Rousseau, Towards optimized schwarz methods for the Navier-Stokes equations. J. Sci. Comput. 66 (2016) 275–295. [Google Scholar]
  4. F. Boyer, F. Hubert and S. Krell, Non-overlapping Schwarz algorithm for solving 2d m-DDFV schemes. IMA J. Numer. Anal. 30 (2010) 1062–1100. [Google Scholar]
  5. F. Boyer, S. Krell and F. Nabet, Inf-sup stability of the discrete duality finite volume method for the 2D Stokes problem. Math. Comput. 84 (2015) 2705–2742. [Google Scholar]
  6. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations. In: Vol. 10 of Efficient Solutions of Elliptic Systems. Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1984) 11–19. [Google Scholar]
  7. R. Cautrès, R. Herbin and F. Hubert, The Lions domain decomposition algorithm on non-matching cell-centred finite volume meshes. IMA J. Numer. Anal. 24 (2004) 465–490. [Google Scholar]
  8. C. Chainais-Hillairet and J. Droniou, Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31 (2011) 61–85. [Google Scholar]
  9. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. S. Delcourte, Développement de méthodes de volumes finis pour la mécanique des fluides. Ph.D. Thesis, Univ. Paul Sabatier (2007). [Google Scholar]
  11. S. Delcourte and P. Omnes, A Discrete Duality Finite Volume discretization of the vorticity-velocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids. Numer. Methods PDEs (2015) 1–30. [Google Scholar]
  12. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
  13. J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [Google Scholar]
  14. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, edited by P. Ciarlet and J.-L. Lions. In: Vol. VII of Handbook of Numerical Analysis. Handb. Numer. Anal. North-Holland (2000) 715–1022. [Google Scholar]
  15. R. Eymard, R. Herbin and J.C. Latché, On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: M2AN 40 (2006) 501–527. [CrossRef] [EDP Sciences] [Google Scholar]
  16. R. Eymard, R. Herbin and J.C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1–36. [Google Scholar]
  17. M.J. Gander and L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2007) 666–697. [Google Scholar]
  18. M.J. Gander and K. Santugini-Repiquet, Cross-points in domain decomposition methods with a finite element discretization. ETNA 45 (2016) 219–240. [Google Scholar]
  19. M.J. Gander, C. Japhet, Y. Maday and F. Nataf, A new cement to glue nonconforming grids with Robin interface conditions: the finite element case. Lect. Notes Comput. Sci. Eng. 40 (2005) 259–266. [Google Scholar]
  20. M.J. Gander, L. Halpern, F. Hubert and S. Krell, Optimized Schwarz methods for anisotropic diffusion with Discrete Duality Finite Volume discretizations. Technical report, Univ. Côte d’Azur, Inria, CNRS, LJAD (2018) https://hal.archives-ouvertes.fr/hal-01782357. [Google Scholar]
  21. M.J. Gander, L. Halpern, F. Hubert and S. Krell, Discrete optimization of robin transmission conditions for anisotropic diffusion with discrete duality finite volume methods. Technical report, Univ. Côte d’Azur, Inria, CNRS, LJAD (2020). [Google Scholar]
  22. V. Girault, B. Rivière and M. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74 (2005) 53–84. [Google Scholar]
  23. T. Goudon, S. Krell and G. Lissoni, Numerical analysis of the DDFV method for the Stokes problem with mixed Neumann/Dirichlet boundary conditions, edited by C. Cancès and P. Omnes. In: Vol. 199 of Proceeding of the 8th International Symposium on Finite Volumes for Complex Applications. Springer Proceedings in Mathematics & Statistics. Springer (2017) 361–369. [Google Scholar]
  24. T. Goudon, S. Krell and G. Lissoni, DDFV method for Navier-Stokes problem with outflow boundary conditions. Numer. Math. 142 (2019) 55–102. [Google Scholar]
  25. T. Goudon, S. Krell and G. Lissoni, Convergence study of a DDFV scheme for the Navier–Stokes equations arising in the domain decomposition setting. In: Finite Volumes for Complex Applications IX. June 15-19, 2020, Bergen, Norway (2020). To appear. [Google Scholar]
  26. L. Halpern and F. Hubert, A finite volume Ventcell-Schwarz algorithm for advection-diffusion equations. SIAM J. Numer. Anal. 52 (2014) 1269–1291. [Google Scholar]
  27. L. Halpern and M. Schatzman, Artificial boundary conditions for incompressible flows. SIAM J. Math. Anal 20 (1989) 308–353. [Google Scholar]
  28. F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182. [Google Scholar]
  29. F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. [Google Scholar]
  30. F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. [Google Scholar]
  31. V. John, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44 (2004) 777–788. [Google Scholar]
  32. S. Krell, Schémas Volumes Finis en mécanique des fluides complexes. Ph.D. Thesis, Univ. de Provence (2010). [Google Scholar]
  33. S. Krell, Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes. Numer. Methods PDEs 27 (2011) 1666–1706. [Google Scholar]
  34. S. Krell, Stabilized DDFV schemes for the incompressible Navier-Stokes equations. In: Finite Volumes for Complex Applications VI, Problems & Perspectives (2011) 605–612. [Google Scholar]
  35. P.L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia, PA (1990) 202–223. [Google Scholar]
  36. G. Lissoni, DDFV method: applications to fluid mechanics and domain decomposition. Ph.D. Thesis, Université Côte d’Azur (2019). [Google Scholar]
  37. G. Lube, L. Müller and F.C. Otto, A nonoverlapping domain decomposition method for stabilized finite element approximations of the Oseen equations. J. Comput. Appl. Math. 132 (2001) 211–236. [Google Scholar]
  38. M. Schäfer, S. Turek, F. Durst, E. Krause and R. Rannacher, Benchmark computations of laminar flow around a cylinder, edited by E.H. Hirschel. In: Vol. 48 of Flow Simulation with High-Performance Computers. Notes on Num. Fluid Mech. (NNFM). Vieweg+Teubner Verlag (1996) 547–566. [Google Scholar]
  39. H.A. Schwarz, Über einen grenzübergang durch alternierendes verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 15 (1870) 272–286. [Google Scholar]
  40. X. Xu, C.O. Chow and S.H. Lui, On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations. ESAIM: M2AN 39 (2005) 1251–1269. [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you