Open Access
Issue
ESAIM: M2AN
Volume 55, Number 4, July-August 2021
Page(s) 1599 - 1633
DOI https://doi.org/10.1051/m2an/2021025
Published online 03 August 2021
  1. A. Ahmad Ali, E. Ullmann and M. Hinze, Multilevel Monte Carlo analysis for optimal control of elliptic PDEs with random coefficients. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 466–492. [Google Scholar]
  2. A. Alexanderian, N. Petra, G. Stadler and O. Ghattas, Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 1166–1192. [Google Scholar]
  3. I. Babuska, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [Google Scholar]
  4. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM review 52 (2010) 317–355. [Google Scholar]
  5. O. Bardou, N. Frikha and G. Pagès, Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling. Monte Carlo Methods Appl. 15 (2009) 173–210. [Google Scholar]
  6. P. Benner, A. Onwunta and M. Stoll, Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM J. Matrix Anal. Appl. 37 (2016) 491–518. [Google Scholar]
  7. A. Borzì and G. von Winckel, A POD framework to determine robust controls in PDE optimization. Comput. Vis. Sci. 14 (2011) 91–103. [Google Scholar]
  8. A. Borz and V. Schulz, Computational optimization of systems governed by partial differential equations. Soc. Ind. Appl. Math. (SIAM). Philadelphia, PA (2010). [Google Scholar]
  9. A. Borzì, V. Schulz, C. Schillings and G. von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization. GAMM-Mitteilungen 33 (2010) 230–246. [Google Scholar]
  10. P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint. SIAM/ASA J. Uncertain. Quantif. 2 (2014) 364–396. [Google Scholar]
  11. A. Cohen and R. DeVore, Approximation of high dimensional parametric PDEs. Acta Numerica 24 (2015) 1–159. [Google Scholar]
  12. A. Cotter, O. Shamir, N. Srebro and K. Sridharan, Better mini-batch algorithms via accelerated gradient methods, edited by J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira and K.Q. Weinberger, In: Advances in Neural Information Processing Systems 24, Curran Associates, Inc. (2011) 1647–1655. [Google Scholar]
  13. J.C. De los Reyes, Numerical PDE-Constrained optimization, SpringerBriefs in Optimization. Springer, Cham (2015). [Google Scholar]
  14. A. Défossez and F. Bach, Averaged least-mean-squares: Bias-variance trade-offs and optimal sampling distributions. Artificial Intelligence and Statistics 38 (2015) 205–213. [Google Scholar]
  15. O. Dekel, R. Gilad-Bachrach, O. Shamir and L. Xiao, Optimal distributed online prediction using mini-batches. J. Mach. Learn. Res. 13 (2012) 165–202. [Google Scholar]
  16. A. Dieuleveut and F. Bach, Nonparametric stochastic approximation with large step-sizes. The Ann. Stat. 44 (2016) 1363–1399. [Google Scholar]
  17. J. Duchi and Y. Singer, Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10 (2009) 2899–2934. [Google Scholar]
  18. L.C. Evans, Partial differential equations, Graduate studies in mathematics. Am. Math. Soc. (1998). [Google Scholar]
  19. N. Flammarion and F. Bach, From averaging to acceleration, there is only a step-size. Conference on Learning Theory (2015) 658–695. [Google Scholar]
  20. C. Geiersbach, W. Wollner, A stochastic gradient method with mesh refinement for PDE constrained optimization under uncertainty. SIAM J. Sci. Comput. 42 (2020) A2750–A2772. [Google Scholar]
  21. P. Grisvard, Elliptic problems in nonsmooth domains, Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA, 69 (2011). [Google Scholar]
  22. M.D. Gunzburger, H.-C. Lee and J. Lee, Error estimates of stochastic optimal Neumann boundary control problems. SIAM J. Numer. Anal. 49 (2011) 1532–1552. [Google Scholar]
  23. M.D. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numerica 23 (2014) 521–650. [Google Scholar]
  24. P.A. Guth, V. Kaarnioja, F.Y. Kuo, C. Schillings and I.H. Sloan, A quasi-Monte Carlo method for optimal control under uncertainty. SIAM-ASA J. Uncertain. Quantif. 9 (2021) 354–383. [Google Scholar]
  25. S.B. Hazra, Large-scale PDE-constrained optimization in applications. Springer-Verlag, Berlin (2010). [Google Scholar]
  26. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  27. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications 23. Springer, New York (2009). [Google Scholar]
  28. D.P. Kouri, An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations with Uncertain Coefficients, ProQuest LLC, Ann Arbor, MI, Ph.D. thesis. Rice University (2012). [Google Scholar]
  29. D.P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847–A1879. [Google Scholar]
  30. D.P. Kouri and T.M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J. Optim. 26 (2016) 365–396. [Google Scholar]
  31. D.P. Kouri and T.M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA J. Uncertain. Quantif. 6 (2018) 787–815. [Google Scholar]
  32. A. Kunoth and C. Schwab, Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs. SIAM J. Control Optim. 51 (2013) 2442–2471. [Google Scholar]
  33. H.J. Kushner and G.G. Yin, Stochastic approximation algorithms and applications, Applications of Mathematics (New York). Springer-Verlag, New York (1997). [Google Scholar]
  34. G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher and S. Ulbrich (eds.), Trends in PDE constrained optimization. Birkhäuser/Springer, Cham (2014). [Google Scholar]
  35. G.J. Lord, C.E. Powell and T. Shardlow, An introduction to computational stochastic PDEs, Cambridge Texts in Applied Mathematics. Cambridge University Press (2014). [Google Scholar]
  36. M. Martin, Stochastic approximation methods for PDE constrained optimal control problems with uncertain parameters, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Thesis 7233 (2019). [Google Scholar]
  37. M. Martin, F. Nobile, PDE-Constrained Optimal Control Problems with Uncertain Parameters using SAGA. SIAM-ASA J. Uncertain. Quantif. 9 (2021) 979–1012. [Google Scholar]
  38. M. Martin, F. Nobile and P. Tsilifis, A multilevel stochastic gradient method for PDE-constrained optimal control problems with uncertain parameters. Preprint arXiv: 1912.11900 (2019). [Google Scholar]
  39. A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19 (2009) 1574–1609. [Google Scholar]
  40. B.T. Polyak and A.B. Juditsky, Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30 (1992) 838–855. [Google Scholar]
  41. H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Statist. 22 (1951) 400–407. [Google Scholar]
  42. R.T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26 (2002) 1443–1471. [Google Scholar]
  43. E. Rosseel and G.N. Wells, Optimal control with stochastic PDE constraints and uncertain controls. Comput. Methods Appl. Mech. Engrg. 213/216 (2012) 152–167. [Google Scholar]
  44. D. Ruppert, Efficient estimations from a slowly convergent Robbins-Monro process. Tech. Report Cornell Uni. Oper. Res. Ind. Eng. (1988). [Google Scholar]
  45. C. Schillings, S. Schmidt and V. Schulz, Efficient shape optimization for certain and uncertain aerodynamic design. Computers & Fluids. 10th ICFD Conference Series on Numerical Methods for Fluid Dynamics (ICFD 2010) 46 (2011) 78–87. [Google Scholar]
  46. M. Schmidt, N. Le Roux and F. Bach, Minimizing finite sums with the stochastic average gradient. Math. Program. 162 (2017) 83–112. [Google Scholar]
  47. A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on stochastic programming, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, Modeling and theory (2014). [Google Scholar]
  48. H. Tiesler, R.M. Kirby, D. Xiu and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control Optim. 50 (2012) 2659–2682. [Google Scholar]
  49. A. Van Barel and S. Vandewalle, Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantif. 7 (2019) 174–202. [Google Scholar]
  50. D. Williams, Probability with martingales. Cambridge mathematical textbooks. Cambridge University Press (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you