Open Access
Issue
ESAIM: M2AN
Volume 55, Number 4, July-August 2021
Page(s) 1635 - 1668
DOI https://doi.org/10.1051/m2an/2021031
Published online 02 August 2021
  1. R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31 (2009) 1603–1627. [Google Scholar]
  2. C. Acary-Robert, E.D. Fernández-Nieto, G. Narbona-Reina and P. Vigneaux, A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model. J. Sci. Comput. 53 (2012) 608–641. [Google Scholar]
  3. E. Audusse, M.-O. Bristeau, M. Pelanti and J. Sainte-Marie, Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution. J. Comput. Phys. 230 (2011) 3453–3478. [Google Scholar]
  4. E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for Shallow Water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. [Google Scholar]
  5. C. Berthon, M. Bessemoulin-Chatard and H. Mathis, Numerical convergence rate for a diffusive limit of hyperbolic systems: p-system with damping. SMAI J. Comput. Math. 2 (2016) 99–119. [Google Scholar]
  6. F. Bouchut and T.M. de Luna, An entropy-satisfying scheme for two-layer Shallow-Water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683–698. [Google Scholar]
  7. A. Bouharguane and B. Mohammadi, Minimisation principles for the evolution of a soft sea bed interacting with a shallow sea. Int. J. Comput. Fluid Dyn. 26 (2012) 163–172. [Google Scholar]
  8. D. Doyen and P.H. Gunawan, An explicit staggered finite volume scheme for the shallow water equations, edited by J. Fuhrmann, M. Ohlberger and C. Rohde. In: Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer International Publishing, Cham (2014) 227–235. [Google Scholar]
  9. F. Engelund and E. Hansen, Investigations of flow in alluvial streams. In: Vol. 35 of Acta Polytechnica Scandinavica/Civil Engineering and Building Construction Series. Danish Academy of Technical Sciences (1966). [Google Scholar]
  10. R. Eymard and P.H. Gunawan, Staggered scheme for the Exner-shallow water equations. Comput. Geosci. 19 (2015) 1197–1206. [Google Scholar]
  11. E.D. Fernández-Nieto, E.H. Koné, T.M. de Luna and R. Bürger, A multilayer shallow water system for polydisperse sedimentation. J. Comput. Phys. 238 (2013) 281–314. [Google Scholar]
  12. E. Fernández-Nieto, T.M. de Luna, G. Narbona-Reina and J.D. Zabsonré, Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy. ESIAM: M2AN 51 (2017) 115–145. [Google Scholar]
  13. A.C. Fowler, Geomorphological Fluid Mechanics. Chapter Dunes and drumlins. Springer-Verlag, Berlin (2001) 430–454. [Google Scholar]
  14. J. Fredsøe, On the development of dunes in erodible channel. J. Fluid Mech. 64 (1974) 1–16. [Google Scholar]
  15. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant System for Laminar Shallow water. Discrete Continuous Dyn. Syst. Ser. B 1 (2001) 89–102. [Google Scholar]
  16. T. Goudon and M. Parisot, On the Spitzer-Härm regime and nonlocal approximations: modeling, analysis and numerical simulations. Multiscale Model. Simul. 9 (2011) 568–600. [Google Scholar]
  17. T. Goudon and M. Parisot, Finite volume schemes on unstructured grids for non-local models: application to the simulation of heat transport in plasmas. J. Comput. Phys. 231 (2012) 8188–8208. [Google Scholar]
  18. A.J. Grass, Sediment transport by waves and currents. Technical Report FL29, SERC London Cent. Mar. Technol. (1981). [Google Scholar]
  19. A.F. Gulbransen, V.L. Hauge and K.-A. Lie, A multiscale mixed finite element method for Vuggy and naturally fractured reservoirs. SPE J. 15 (2010) 395–403. [Google Scholar]
  20. R. Herbin, W. Kheriji and J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and euler equations. ESAIM: M2AN 48 (2014) 1807–1857. [Google Scholar]
  21. F. James, P.-Y. Lagrée, M.H. Le and M. Legrand, Towards a new friction model for shallow water equations through an interactive viscous layer. ESAIM: M2AN 53 (2019) 269–299. [EDP Sciences] [Google Scholar]
  22. E.F. Keller and L.A. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30 (1971) 235–248. [Google Scholar]
  23. J.F. Kennedy, The mechanics of dunes and antidunes in erodible bed channels. J. Fluid Mech. 16 (1963) 521–544. [Google Scholar]
  24. S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. [Google Scholar]
  25. S. Klainerman and A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. [Google Scholar]
  26. P.-Y. Lagrée, A triple deck model of ripple formation and evolution. Phys. Fluids 15 (2003) 2355–2368. [Google Scholar]
  27. D.K. Lysne, Movement of sand in tunnels. Proc. A.S.C.E. 95 (1969) 1835–1846. [Google Scholar]
  28. R. Manning, On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Ireland (1891) 161–207. [Google Scholar]
  29. A.F. Messiter, Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18 (1970) 241–257. [Google Scholar]
  30. B. Mohammadi and A. Bouharguane, Optimal dynamics of soft shapes in shallow waters. Comput. Fluids 40 (2011) 291–298. [Google Scholar]
  31. C.S. Patlak, Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953) 311–338. [Google Scholar]
  32. H.E. Reports, editor. Formulas for Bed-Load Transport., International Association for Hydraulic Structures Research (1948). [Google Scholar]
  33. G. Rosatti, L. Bonaventura, A. Deponti and G. Garegnani, An accurate and efficient semi-implicit method for section-averaged free-surface flow modelling. Int. J. Numer. Methods Fluids 65 (2011) 448–473. [Google Scholar]
  34. G.P. Schurtz, P.D. Nicola and M. Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas 7 (2000) 4238–4249. [Google Scholar]
  35. B. Spinewine, Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. PhD thesis, Université catholique de Louvain (2005). [Google Scholar]
  36. P.A. Tassi, S. Rhebergen, C.A. Vionnet and O. Bokhove, A discontinuous Galerkin finite element model for river bed evolution under shallow flows. Comput. Methods Appl. Mech. Eng. 197 (2008) 2930–2947. [Google Scholar]
  37. L. van Rijn, Sediment transport – Part I: bed load – Part II: suspended load. J. Hydraulic Div. 110 (1984) 1431–1456. [Google Scholar]
  38. S. Vater, A new projection method for the Zero Froude number shallow water equations. . PhD thesis. Free University Berlin (2004). [Google Scholar]
  39. Y. Zech, S. Soares-Frazão, B. Spinewine, C. Savary and L. Goutière, Inertia effects in bed-load transport models. Can. J. Civ. Eng. 36 (2009) 1587–1597. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you