Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 1699 - 1740
DOI https://doi.org/10.1051/m2an/2021035
Published online 17 September 2021
  1. P. Arnault, Modeling viscosity and diffusion of plasma for pure elements and multicoponent mixtures from weakly to strongly coupled regimes. High Energy Density Phys. 9 (2013) 711–721. [Google Scholar]
  2. A. Banerjee, R.A. Gore and M.J. Andrews, Development and validation of a turbulent-mix model for variable-density and compressible flows. Phys. Rev. E 82 (2010) 046309. [CrossRef] [Google Scholar]
  3. G.-I. Barenblatt, Self-similar turbulence propagation from an instantaneous plane source. Nonlinear Dyn. Turbul. (1983) 48–60. [Google Scholar]
  4. C. Berthon and V. Desveaux, An entropy preserving MOOD scheme for the Euler equations. Int. J. Finite 11 (2014) 39. [Google Scholar]
  5. C. Berthon and D. Reigner, An approximate nonlinear projection scheme for a combustion model. ESAIM: M2AN 37 (2003) 451–478. Doi: 10.1051/m2an:2003037. [Google Scholar]
  6. C. Berthon, F. Coquel, J.-M. Hérard and M. Uhlmann, An approximate solution of the Riemann problem for a realizable second-moment turbulent closure. Shock. Waves 11 (2002) 245–269. [Google Scholar]
  7. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws. Birkhäuser Basel (2004). [Google Scholar]
  8. Y. Bury, P. Graumer, S. Jamme and J. Griffond, Turbulent transition of a gaseous mixing zone induced by the Richtmyer-Meshkov instability. Phys. Rev. Fluids 5 (2020) 024101. [Google Scholar]
  9. G. Carré, S. Del Pino, B. Després and E. Labourasse, A cell centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228 (2009) 5160–5183. [CrossRef] [Google Scholar]
  10. C. Cherfils and A.K. Harrison, Comparison of different statistical models of turbulence by similarity methods. In: Presented at the 1994 ASME Fluids Engineering Summer Meeting (May 1994) 19. [Google Scholar]
  11. J.-F. Clouet, The Rosseland approximation for radiative transfer problems in heterogeneous media. J. Quant. Spectrom. Radiat. Transfer 58 (1997) 33–43. [Google Scholar]
  12. F. Delarue and F. Lagoutière, Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. 199 (2011) 229–268. [Google Scholar]
  13. B. Després and C. Mazeran, Lagrangian gaz dynamics in two dimensions and lagrangian schemes. Arch. Ration. Mech. Anal. 178 (2005) 327–371. [Google Scholar]
  14. C. Dopazo, Probability density function approach for a turbulent axisymmetric heated jet. Centreline evolution. Phys. Fluids 18 (1975) 397–404. [Google Scholar]
  15. C. Emako, V. Letizia, N. Petrova, R. Sainct, R. Duclous and O. Soulard, Diffusion limit of the simplified Langevin PDF model in weakly inhomogeneous turbulence. ESAIM: Proc. Surv. 48 (2015) 400–419. [Google Scholar]
  16. A. Favre, L.S.G. Kovasznay, R. Dumas, J. Gaviglio and M. Coantic, La turbulence en mécanique des fluides: bases théoriques et expérimentales, méthodes statistiques. Gauthier-Villars, Paris (1976). [Google Scholar]
  17. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  18. B.-J. Gréa, The dynamics of the k–ε mix model toward its self-similar Rayleigh-Taylor solution. J. Turbulence 16 (2015) 184–202. [Google Scholar]
  19. O. Grégoire, D. Souffland and S. Gauthier, A second-order turbulence model for gaseous mixtures induced by Richtmyer-Meshkov instability. J. Turbul. 6 (2005) N29. [Google Scholar]
  20. J. Griffond and O. Soulard, Evaluation of augmented RSM for interaction of homogeneous turbulent mixture with shock and rarefaction waves. J. Turbul. 15 (2014) 569–595. [Google Scholar]
  21. J. Griffond, O. Soulard and D. Souffland, A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions. Phys. Scr. 2010 (2010) 014059. [Google Scholar]
  22. J. Griffond, J.-F. Hass, D. Souffland, G. Bouzgarrou, Y. Bury and S. Jamme, Experimental and numerical investigation of the growth of an air/SF6 turbulent mixing zone in a shock tube. J. Fluid Eng. 139 (2017) 091205. [Google Scholar]
  23. J.O. Hinze, Turbulence, 2nd edition.. McGraw-Hill, New York (1975). [Google Scholar]
  24. K.K. Mackay and J.E. Pino, Modeling gas-shell mixing in icf with separated reactants. Phys. Plasmas 27 (2020) 092704. [Google Scholar]
  25. P.-H. Maire, Contribution to the numerical modeling of Inertial Confinement Fusion, Habilitation à diriger des recherches, Université Bordeaux I(February 2011). [Google Scholar]
  26. B. Meltz, Analyse mathématiques et numérique de système hydrodynamique compressible et de photonique en coordonnées polaires. Ph.D. thesis, Université Paris-Saclay (2015). [Google Scholar]
  27. B. Merlet and J. Vovelle, Error estimate for finite volume scheme. Numer. Math. 106 (2007) 129–155. [CrossRef] [MathSciNet] [Google Scholar]
  28. B. Morgan, B. Olson, W. Black and J. McFarland, Large-eddy simulation and Reynolds-averaged Navier-Stokes modeling of a reacting Rayleigh-Taylor mixing layer in a spherical geometry. Phys. Rev. E 98 (2018) 033111. [Google Scholar]
  29. F. Poggi, M.-H. Thorembey and R. Gérard, Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability. Phys. Fluids 10 (1998) 2698–2700. [Google Scholar]
  30. S.B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (1985) 119–192. [Google Scholar]
  31. S.B. Pope, On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6 (1994) 973–985. [Google Scholar]
  32. S.B. Pope, Turbulent Flows. Cambridge University Press (2000). [CrossRef] [Google Scholar]
  33. J.R. Ristorcelli, Exact statistical results for binary mixing and reaction in variable density turbulence. Phys. Fluids 29 (2017) 020705. [Google Scholar]
  34. R. Schiestel, Méthodes de Modélisation et de Simulation des Ecoulements Turbulents. Hermès/Lavoisier (2006). [Google Scholar]
  35. R. Schiestel, Modeling and Simulation of Turbulent Flows. John Wiley & Sons, Ltd. (2008). [CrossRef] [Google Scholar]
  36. D. Souffland, O. Soulard and J. Griffond, Modeling of Reynolds stress models for diffusion fluxes inside shock waves. J. Fluids Eng. 136 (2014) 091102. [Google Scholar]
  37. O. Soulard, F. Guillois, J. Griffond, V. Sabelnikov and S. Simoëns, Permanence of large eddies in Richtmyer-Meshkov turbulence with a small Atwood number. Phys. Rev. Fluids 3 (2018) 104603. [Google Scholar]
  38. O. Soulard, F. Guillois, J. Griffond, V. Sabelnikov and S. Simoëns, A two-scale Langevin pdf model for Richtmyer-Meshkov turbulence with a small Atwood number. Phys. D: Nonlinear Phenom. 403 (2020) 132276. [Google Scholar]
  39. D. Veynante and L. Vervisch, Turbulent combustion modeling. Prog. Energy Combust. Sci. 28 (2002) 193–266. [Google Scholar]
  40. G. Viciconte, B.-J. Gréa, F.S. Godefer, P. Arnault and J. Clérouin, Sudden diffusion of turbulent mixing layers in weakly coupled plasmas under compression. Phys. Rev E 100 (2019) 063205. [PubMed] [Google Scholar]
  41. J. Vides, B. Braconnier, E. Audit, C. Berthon and B. Nkonga, A Godunov-Type solver for the numerical approximation of gravitational flows. Commun. Comput. Phys. 15 (2014) 46–75. [Google Scholar]
  42. E.L. Vold, A.S. Joglekar, M.I. Ortega, R. Moll, D. Fenn and M. Kim, Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations. Phys. Plasmas 22 (2015) 112708. [Google Scholar]
  43. J.H. Williamson, Low storage Runge-Kutta schemes. J. Comput. Phys. 35 (1980) 48–56. [Google Scholar]
  44. J.G. Wouchuk and K. Nishihara, Asymptotic growth in the linear Richtmyer-Meshkov instability. Phys. Plasmas 4 (1997) 1028–1038. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you