Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 1741 - 1777
DOI https://doi.org/10.1051/m2an/2021036
Published online 17 September 2021
  1. R.A. Adams and J.F. Fournier, Sobolev spaces, 2nd edition. Vol. 140 of Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam, (2003). [Google Scholar]
  2. J. Aghili, K. Brenner, J. Hennicker, R. Masson and L. Trenty, Two-phase discrete fracture matrix models with linear and nonlinear transmission conditions. GEM – Int. J. Geomath. 10 (2019) 1. [Google Scholar]
  3. R. Ahmed, M.G. Edwards, S. Lamine, B.A.H. Huisman and M. Pal, Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model. J. Comput. Phys. 303 (2015) 470–497. [Google Scholar]
  4. C. Alboin, J. Jaffre, J. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media. Fluid Flow Trans. Porous Media 295 (2002) 13–24. [Google Scholar]
  5. O. Angelini, K. Brenner and K. Hilhorst, A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation. Numerische Mathematik 123 (2013) 219–257. [Google Scholar]
  6. P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. P.F. Antonietti, L. Formaggia, A. Scotti, M. Verani and N. Verzott, Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50 (2016) 809–832. [CrossRef] [EDP Sciences] [Google Scholar]
  8. L. Beirão Da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [CrossRef] [Google Scholar]
  9. I.I. Bogdanov, V.V. Mourzenko, J.-F. Thovert and P.M. Adler, Two-phase flow through fractured porous media. Phys. Rev. E 68 (2003) 026703. [CrossRef] [Google Scholar]
  10. F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media. Comput. Math. with Appl. 98 (2021) 40–68. [Google Scholar]
  11. F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Two-phase darcy flows in fractured and deformable porous media, convergence analysis and iterative coupling. In: Vol. 2020 of Conference Proceedings, ECMOR XVII, Eur. Assoc. Geosci. Eng. (2020). 1–20. [Google Scholar]
  12. K. Brenner, M. Groza, C. Guichard and R. Masson, Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media. ESAIM: M2AN 49 (2015) 303–330. [CrossRef] [EDP Sciences] [Google Scholar]
  13. K. Brenner, M. Groza, C. Guichard, G. Lebeau and R. Masson, Gradient discretization of hybrid-dimensional Darcy flows in fractured porous media. Numerische Mathematik 134 (2016) 569–609. [Google Scholar]
  14. K. Brenner, J. Hennicker, R. Masson and P. Samier, Gradient Discretization of Hybrid Dimensional Darcy Flows in Fractured Porous Media with discontinuous pressure at matrix fracture interfaces. IMA J. Numer. Anal. 37 (2017) 1551–1585. [Google Scholar]
  15. K. Brenner, J. Hennicker, R. Masson and P. Samier, Hybrid dimensional modelling of two-phase flow through fractured with enhanced matrix fracture transmission conditions. J. Comput. Phys. 357 (2018) 100–124. [Google Scholar]
  16. K. Brenner, J. Droniou, R. Masson and E.H. Quenjel, Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure. IMA J. Numer. Anal. (2020)33p (to appear). [Google Scholar]
  17. O. Coussy Poromechanics. John Wiley & Sons (2004). [Google Scholar]
  18. F. Dam, R. Eymard, D. Hilhorst, M. Mainguy and R. Masson, A preconditioned conjugate gradient based algorithm for coupling geomechanical-reservoir simulations. Oil & Gas Sci. Technol. – Rev. IFP 57 (2002) 515–523. [Google Scholar]
  19. D. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84 (2015) 1–31. [CrossRef] [Google Scholar]
  21. J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numerische Mathematik 132 (2016) 721–766. [Google Scholar]
  22. J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. In: Vol. 82 of Mathematics & Applications, Springer (2018). [Google Scholar]
  23. J. Droniou, J. Hennicker and R. Masson, Numerical analysis of a two-phase flow discrete fracture model. Numerische Mathematik 141 (2019) 21–62. [Google Scholar]
  24. I.S. Duff and J.K. Reid, The design of MA48: a code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22 (1996) 187–226. [CrossRef] [Google Scholar]
  25. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Vol. VII of P.G. Ciarlet and J.L. Lions, editors, Techniques of Scientific Computing, Part III, Handbook of Numerical Analysis, North-Holland [Amsterdam] (2000) 713–1020. [Google Scholar]
  26. R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM Z. Angew. Math. Mech. 94 (2014) 560–585. [Google Scholar]
  27. E. Flauraud, F. Nataf, I. Faille and R. Masson, Domain decomposition for an asymptotic geological fault modeling. Comptes Rendus à l’académie des Sciences, Mécanique 331 (2003) 849–855. [Google Scholar]
  28. M. Gander, J. Hennicker, R. Masson, Modeling and Analysis of the Coupling in Discrete Fracture Matrix models. SIAM J. Numer. Anal. 59 (2021) 195–218. [Google Scholar]
  29. T.T. Garipov, M. Karimi-Fard and H.A. Tchelepi, Discrete fracture model for coupled flow and geomechanics. Comput. Geosci. 20 (2016) 149–160. [Google Scholar]
  30. B. Giovanardi, L. Formaggia, A. Scotti and P. Zunino, Unfitted fem for modelling the interaction of multiple fractures in a poroelastic medium. In: E. Burman, M.G. Larson and M.A. Olshanskii, editors, Geometrically Unfitted Finite Element Methods and Applications. Springer International Publishing, Cham (2017) 331–352. [Google Scholar]
  31. V. Girault, K. Kumar and M.F. Wheeler, Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20 (2016) 997–1011. [Google Scholar]
  32. V. Girault, M.F. Wheeler, B. Ganis and M.E. Mear, A lubrication fracture model in a poro-elastic medium. Math. Models and Methods Appl. Sci. 25 (2015) 587–645. [Google Scholar]
  33. V. Girault, M.F. Wheeler, Kundan Kumar and Gurpreet Singh, Mixed Formulation of a Linearized Lubrication Fracture Model in a Poro-elastic Medium, Springer International Publishing, Cham (2019) 171–219. [Google Scholar]
  34. K.K. Hanowski and O. Sander, The hydromechanical equilibrium state of poroelastic media with a static fracture: A dimension-reduced model with existence results in weighted Sobolev spaces and simulations with an XFEM discretization. Math. Models Methods Appl. Sci. 28 (2018) 2511–2556. [Google Scholar]
  35. P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity. ESAIM: M2AN 37 (2003) 63–72. [CrossRef] [EDP Sciences] [Google Scholar]
  36. J. Jaffré, M. Mnejja and J.E. Roberts, A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4 (2011) 967–973. [Google Scholar]
  37. L. Jeannin, M. Mainguy, R. Masson and S. Vidal-Gilbert, Accelerating the convergence of coupled geomechanical-reservoir simulations. Int. J. Numer. Anal. Methods Geomech. 31 (2007) 1163–1181. [Google Scholar]
  38. B. Jha and R. Juanes, Coupled Modeling of Multiphase Flow and Fault Poromechanics during geologic CO2 storage. Energy Procedia 63 (2014) 3313–3329. [Google Scholar]
  39. L. Jin and M.D. Zoback, Fully coupled nonlinear fluid flow and poroelasticity in arbitrarily fractured porous media: A hybrid- dimensional computational model. J. Geophys. Res. Solid Earth 22 (2017) 7626–7658. [Google Scholar]
  40. M. Karimi-Fard, L.J. Durlofsky and K. Aziz, An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9 (2004) 227–236. [CrossRef] [Google Scholar]
  41. A.R. Khoei, N. Hosseini and T. Mohammadnejad, Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model. Ad. Water Resour. 94 (2016) 510–528. [Google Scholar]
  42. J. Kim, H.A. Tchelepi and R. Juanes, Rigorous coupling of geomechanics and multiphase flow with strong capillarity. Soc. Petrol. Eng. 18 (2013) 123–1139. [Google Scholar]
  43. J. Kim, H.A. Tchelepi and R. Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200 (2011) 1591–1606. [Google Scholar]
  44. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  45. J.E.P. Monteagudo and A. Firoozabadi, Control-volume model for simulation of water injection in fractured media: incorporating matrix heterogeneity and reservoir wettability effects. SPE J. 12 (2007) 355–366. [CrossRef] [Google Scholar]
  46. J.M. Nordbotten, W.M. Boon, A. Fumagalli and E. Keilegavlen, Unified approach to discretization of flow in fractured porous media. Comput. Geosci. 23 (2019) 225–237. [Google Scholar]
  47. E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics, Vol. 1: Basis and Solids of Lect. Notes Numer. Methods Eng. Sci. Springer, Netherlands (2009). [Google Scholar]
  48. M. Pernice and H.F. Walker, NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19 (1998) 302–318. [Google Scholar]
  49. V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29 (2006) 1020–1036. [Google Scholar]
  50. T.H. Sandve, I. Berre and J.M. Nordbotten, An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231 (2012) 3784–3800. [Google Scholar]
  51. X. Tunc, I. Faille, T. Gallouët, M.C. Cacas and P. Havé, A model for conductive faults with non matching grids. Comput. Geosci. 16 (2012) 277–296. [CrossRef] [EDP Sciences] [Google Scholar]
  52. E. Ucar, E. Keilegavlen, I. Berre and J.M. Nordbotten, A finite-volume discretization for deformation of fractured media. Comput. Geosci. 22 (2018) 993–1007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you