Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2293 - 2322
DOI https://doi.org/10.1051/m2an/2021033
Published online 21 October 2021
  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, New York (2000). [CrossRef] [Google Scholar]
  2. A. Allendes, F. Fuica and E. Otárola, Adaptive finite element methods for sparse PDE-constrained optimization. IMA J. Numer. Anal. 40 (2020) 2106–2142. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Amestoy, I. Duff and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184 (2000) 501–520. [CrossRef] [Google Scholar]
  4. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201–229. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Atkinson, W. Han, Theoretical Numerical Analysis, A functional analysis framework. Vol. 39 of Texts in Applied Mathematics, Springer-Verlag, New York (2001). [CrossRef] [Google Scholar]
  7. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39 (2000) 113–132. [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44 (2009) 3–25. [Google Scholar]
  9. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, New York (2000). [Google Scholar]
  10. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Vol. 15 of Texts in Applied Mathematics, Springer, New York, 3rd edition (2008). [CrossRef] [Google Scholar]
  11. E. Casas, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26 (2007) 137–153. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional. SIAM J. Optim. 22 (2012) 795–820. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems, Vol. 21 (2002) 67–100. Special issue in memory of Jacques-Louis Lions. [Google Scholar]
  14. E. Casas and M. Mateos, Optimal Control of Partial Differential Equations, in Computational Mathematics, Numerical Analysis and Applications, Vol. 13 of SEMA SIMAI Springer Ser., Springer, Cham (2017) 3–59. [CrossRef] [Google Scholar]
  15. E. Casas, M. Mateos and F. Tröltzsch, Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31 (2005) 193–219. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45 (2006) 1586–1611. [Google Scholar]
  17. E. Casas and F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22 (2012) 261–279. [CrossRef] [MathSciNet] [Google Scholar]
  18. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 4 Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
  19. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA (1985). [Google Scholar]
  20. M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47 (2008) 1721–1743. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Hintermüller, R.H.W. Hoppe, Y. Iliash and M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: COCV 14 (2008) 540–560. [CrossRef] [EDP Sciences] [Google Scholar]
  22. D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219. [Google Scholar]
  23. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Vol. 31 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). Reprint of the 1980 original. [CrossRef] [Google Scholar]
  24. K. Kohls, A. Rösch and K.G. Siebert, A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52 (2014) 1832–1861. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Liu and N. Yan, A Posteriori Error Estimates for Distributed Convex Optimal Control Problems. Adv. Comput. Math. 15 (2001) 285–309. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Liu and N. Yan, A Posteriori Error Estimates for Control Problems Governed by Nonlinear Elliptic Equations, Vol. 47, 2nd International Workshop on Numerical Linear Algebra, Numerical Methods for Partial Differential Equations and Optimization (Curitiba, 2001) (2003) 173–187. [Google Scholar]
  27. R.H. Nochetto and A. Veeser, Primer of Adaptive Finite Element Methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications, Vol. 2040 of Lecture Notes in Math., Springer, Heidelberg, (2012) 125–225. [Google Scholar]
  28. T. Roubček, Nonlinear Partial Differential Equations with Applications, Vol. 153 of International Series of Numerical Mathematics, Birkhäuser/Springer Basel AG, Basel, 2nd edition (2013). [Google Scholar]
  29. G. Savaré, Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176–201. [CrossRef] [MathSciNet] [Google Scholar]
  30. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. [CrossRef] [MathSciNet] [Google Scholar]
  31. F. Tröltzsch, Optimal Control of Partial Differential Equations, Vol. 112 of Graduate Studies in Mathematics. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  32. R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013). [Google Scholar]
  33. B. Vexler and W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47 (2008) 509–534. [CrossRef] [MathSciNet] [Google Scholar]
  34. G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858–886. [Google Scholar]
  35. E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you