Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2259 - 2291
DOI https://doi.org/10.1051/m2an/2021060
Published online 13 October 2021
  1. D.W. Aha, D. Kibler and M.K. Albert, Instance-based learning algorithms. Mach. Learn. 6 (1991) 37–66. [Google Scholar]
  2. A. Basudhar and S. Missoum, An improved adaptive sampling scheme for the construction of explicit boundaries. Struct. Multi. Optim. 42 (2010) 517–529. [Google Scholar]
  3. C. Bigoni and J.S. Hesthaven, Simulation-based anomaly detection and damage localization: an application to structural health monitoring. Comput. Methods Appl. Mech. Eng. 363 (2020) 112896. [Google Scholar]
  4. P. Binev, A. Cohen, W. Dahmen and R. DeVore, Classification algorithms using adaptive partitioning. Ann. Stat. 42 (2014) 2141–2163. [Google Scholar]
  5. M. Blachnik and M. Kordos, Comparison of instance selection and construction methods with various classifiers. Appl. Sci. 10 (2020) 3933. [Google Scholar]
  6. M. Browne, A geometric approach to non-parametric density estimation. Pattern Recogn. 40 (2007) 134–140. [Google Scholar]
  7. A. Bueno-Orovio, E.M. Cherry and F.H. Fenton, Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253 (2008) 544–560. [PubMed] [Google Scholar]
  8. J.R. Cano, F. Herrera and M. Lozano, Stratification for scaling up evolutionary prototype selection. Pattern Recognit. Lett. 26 (2005) 953–963. [Google Scholar]
  9. M.J. Fryer, A review of some non-parametric methods of density estimation. IMA J. Appl. Math. 20 (1977) 335–354. [Google Scholar]
  10. S. Givant and P. Halmos, Introduction to Boolean Algebras. Springer Science & Business Media (2008). [Google Scholar]
  11. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, Generative adversarial networks. Preprint arXiv:1406.2661 (2014). [Google Scholar]
  12. M. Gu and K. Anderson, Calibration of imperfect mathematical models by multiple sources of data with measurement bias. Preprint arXiv:1810.11664 (2018). [Google Scholar]
  13. H. Gweon, M. Schonlau and S.H. Steiner, The k conditional nearest neighbor algorithm for classification and class probability estimation. Peer J. Comput. Sci. 5 (2019) e194. [Google Scholar]
  14. P. Hart, The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 14 (1968) 515–516. [Google Scholar]
  15. D. Higdon, M. Kennedy, J.C. Cavendish, J.A. Cafeo and R.D. Ryne, Combining field data and computer simulations for calibration and prediction. SIAM J. Sci. Comput. 26 (2004) 448–466. [Google Scholar]
  16. M. Johnson, Classification of AE transients based on numerical simulations of composite laminates. Ndt & e Int. 36 (2003) 319–329. [Google Scholar]
  17. M. Lapin, M. Hein and B. Schiele, Learning using privileged information: SVM+ and weighted SVM. Neural Netw. 53 (2014) 95–108. [PubMed] [Google Scholar]
  18. D. Lombardi and F. Raphel, A greedy dimension reduction method for classification problems (2019) https://hal.inria.fr/hal-02280502. [Google Scholar]
  19. E. Marchiori, Hit miss networks with applications to instance selection. J. Mach. Learn. Res. 9 (2008) 997–1017. [Google Scholar]
  20. A. Mendizabal, T. Fountoukidou, J. Hermann, R. Sznitman and S. Cotin, A combined simulation and machine learning approach for image-based force classification during robotized intravitreal injections. In: International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, Cham (2018 September) 12–20. [Google Scholar]
  21. B. Müller, A. Hasman and J.A. Blom, Building intelligent alarm systems by combining mathematical models and inductive machine learning techniques Part 2 – sensitivity analysis. Int. J. Bio-Med. Comput. 42 (1996) 165–179. [Google Scholar]
  22. D. Nova and P.A. Estávez, A review of learning vector quantization classifiers. Neural Comput. App. 25 (2014) 511–524. [Google Scholar]
  23. V.M. Patel, R. Gopalan, R. Li and R. Chellappa, Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32 (2015) 53–69. [Google Scholar]
  24. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg and J. Vanderplas, Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12 (2011) 2825–2830. [Google Scholar]
  25. B. Qin and F. Xiao, A non-parametric method to determine basic probability assignment based on kernel density estimation. IEEE Access 6 (2018) 73509–73519. [Google Scholar]
  26. G. Ritter, H. Woodruff, S. Lowry and T. Isenhour, An algorithm for a selective nearest neighbor decision rule (corresp.). IEEE Trans. Inf. Theory 21 (1975) 665–669. [Google Scholar]
  27. L. Rosafalco, A. Manzoni, S. Mariani and A. Corigliano, Fully convolutional networks for structural health monitoring through multivariate time series classification. Adv. Model. Simul. Eng. Sci. 7 (2020) 1–31. [Google Scholar]
  28. S. Sun, H. Shi and Y. Wu, A survey of multi-source domain adaptation. Inf. Fusion 24 (2015) 84–92. [Google Scholar]
  29. T. Taddei, J.D. Penn, M. Yano and A.T. Patera, Simulation-based classification; a model-order-reduction approach for structural health monitoring. Arch. Comput. Methods Eng. 25 (2018) 23–45. [Google Scholar]
  30. L.O. Tedeschi, Assessment of the adequacy of mathematical models. Agric. Syst. 89 (2006) 225–247. [Google Scholar]
  31. I. Tomek, An experiment with the edited nearest-nieghbor rule. IEEE Trans. Syst. Man Cybern. 6 (1976) 448–452. [Google Scholar]
  32. F. Vázquez, J.S. Sánchez and F. Pla, A stochastic approach to Wilson’s editing algorithm. In: Iberian Conference on Pattern Recognition and Image Analysis. Springer, Berlin, Heidelberg (2005 June) 35–42. [Google Scholar]
  33. M. Wang and W. Deng, Deep visual domain adaptation: a survey. Neurocomputing 312 (2018) 135–153. [Google Scholar]
  34. D.R. Wilson and T.R. Martinez, Instance pruning techniques. In: Vol. 97 of ICML (1997, July) 400–411. [Google Scholar]
  35. D.R. Wilson and T.R. Martinez, Reduction techniques for instance-based learning algorithms. Mach. Learn. 38 (2000) 257–286. [Google Scholar]
  36. K. Zhang, B. Schökopf, K. Muandet and Z. Wang, Domain adaptation under target and conditional shift. In: International Conference on Machine Learning. PMLR (2013, May) 819–827. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you