Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2445 - 2472
DOI https://doi.org/10.1051/m2an/2021053
Published online 25 October 2021
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. In: Vol. 55 Courier Corporation (1965). [Google Scholar]
  2. H. Ammari, Scattering of waves by thin periodic layers at high frequencies using the on-surface radiation condition method. IMA J. Appl. Math. 60 (1998) 199–214. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Ammari and J.C. Nédélec, Analysis of the Diffraction from Chiral Gratings. In: Mathematical Modeling in Optical Science. SIAM (2001) 179–206. [CrossRef] [Google Scholar]
  4. H. Ammari and G. Bao, Coupling of finite element and boundary element methods for the scattering by periodic chiral structures. J. Comput. Math. 26 (2008) 261–283. [MathSciNet] [Google Scholar]
  5. R. Aylwin, C. Jerez-Hanckes and J. Pinto, On the properties of quasi-periodic boundary integral operators for the Helmholtz equation. Integral Equ. Oper. Theory 92 (2020) 17. [CrossRef] [Google Scholar]
  6. R. Aylwin, G. Silva-Oelker, C. Jerez-Hanckes and P. Fay, Optimization methods for achieving high diffraction efficiency with perfect electric conducting gratings. J. Opt. Soc. Am. A 37 (2020) 1316–1326. [CrossRef] [PubMed] [Google Scholar]
  7. G. Bao, Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math. 57 (1997) 364–381. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Bao, Recent mathematical studies in the modelling of optics and electromagnetics. J. Comput. Appl. Math. 22 (2004) 148–155. [Google Scholar]
  9. G. Bao and D.C. Dobson, On the scattering by a biperiodic structure. Proc. Am. Math. Soc. 128 (2000) 2715–2723. [CrossRef] [Google Scholar]
  10. G. Bao, D.C. Dobson and J.A. Cox, Mathematical studies in rigorous grating theory. J. Opt. Soc. Am. A 12 (1995) 1029–1042. [CrossRef] [Google Scholar]
  11. A. Barnett and L. Greengard, A new integral representation for quasi-periodic scattering problems in two dimensions. BIT Numer. Math. 51 (2011) 67–90. [CrossRef] [Google Scholar]
  12. Y. Boubendir, V. Dominguez and C. Turc, High-order Nyström discretizations for the solution of integral equation formulations of two-dimensional Helmholtz transmission problems. IMA J. Numer. Anal. 36 (2014). [Google Scholar]
  13. O.P. Bruno, M.C. Haslam, Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies, and glancing incidences. JOSA A 26 (2009) 658–668. [CrossRef] [PubMed] [Google Scholar]
  14. O.P. Bruno and B. Delourme, Rapidly convergent two-dimensional quasi-periodic Green’s function throughout the spectrum – including Wood anomalies. J. Comput. Phys. 262 (2014) 262–290. [CrossRef] [Google Scholar]
  15. O.P. Bruno and A.G. Fernandez-Lado, Rapidly convergent quasi-periodic Green’s functions for scattering by arrays of cylinders – including Wood anomalies. Proc. R. Soc. A 473 (2017) 20160802. [CrossRef] [PubMed] [Google Scholar]
  16. O.P. Bruno, S.P. Shipman, C. Turc and S. Venakides, Superalgebraically convergent smoothly windowed lattice sums for doubly periodic green functions in three-dimensional space. Proc. R. Soc. A 472 (2016) 20160255. [CrossRef] [PubMed] [Google Scholar]
  17. O.P. Bruno, S.P. Shipman, C. Turc and V. Stephanos, Three-dimensional quasi-periodic shifted Green’s function throughout the spectrum, including Wood anomalies, Proc. R. Soc. A 473 (2017) 20170242. [CrossRef] [PubMed] [Google Scholar]
  18. Y.B. Chen and Z. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators. Opt. Commun. 269 (2007) 411–417. [CrossRef] [Google Scholar]
  19. M.H. Cho and A.H. Barnett, Robust fast direct integral equation solver for quasi-periodic scattering problems with a large number of layers. Opt. Express 23 (2015) 1775–1799. [CrossRef] [Google Scholar]
  20. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). [CrossRef] [Google Scholar]
  21. D.C. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure. J. Math. Anal. Appl. 166 (1992) 507–528. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Elschner and G. Schmidt, Diffraction in periodic structures and optimal design of binary gratings. Part i: direct problems and gradient formulas. Math. Methods Appl. Sci. 21 (1998) 1297–1342. [CrossRef] [MathSciNet] [Google Scholar]
  23. I.G. Graham and I.H. Sloan, Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ℝ3. Numer. Math. 92 (2002) 289–323. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Greengard, K.L. Ho and J.Y. Lee, A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. J. Comput. Phys. 258 (2014) 738–751. [CrossRef] [MathSciNet] [Google Scholar]
  25. F.Q. Hu, A spectral boundary integral equation method for the 2D Helmholtz equation. J. Comput. Phys. 120 (1995) 340–347. [CrossRef] [MathSciNet] [Google Scholar]
  26. C. Jerez-Hanckes and J. Pinto, High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs. ESAIM: M2AN 54 (2020) 975–2009. [Google Scholar]
  27. A. Kirsch, Diffraction by Periodic structures. In: Inverse Problems in Mathematical Physics. Springer (1993) 87–102. [CrossRef] [Google Scholar]
  28. R. Kress, Linear Integral Equations, 3rd edition. In: Applied Mathematical Sciences (2014). [CrossRef] [Google Scholar]
  29. C.M. Linton, The Green’s function for the two-dimensional Helmholtz equation in periodic domains. J. Eng. Math. 33 (1998) 377–401. [CrossRef] [Google Scholar]
  30. Y. Liu and A. Barnett, Efficient numerical solution of acoustic scattering from doubly-periodic arrays of axisymmetric objects. J. Comput. Phys. 324 (2016) 226–245. [CrossRef] [MathSciNet] [Google Scholar]
  31. E.G. Loewen and E. Popov, Diffraction Gratings and Applications. CRC Press (2018). [CrossRef] [Google Scholar]
  32. W.C.H. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
  33. Y. Nakata and M. Koshiba, Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings. JOSA A 7 (1990) 1494–1502. [CrossRef] [Google Scholar]
  34. J.C. Nédélec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations. SIAM J. Math. Anal. 22 (1991) 1679–1701. [CrossRef] [MathSciNet] [Google Scholar]
  35. D. Nguyen, Spectral methods for direct and inverse scattering from periodic structures. Ph.D. thesis, École Polytechnique (2012). [Google Scholar]
  36. E. Popov, Gratings: Theory and Numeric Applications. Popov, Institut Fresnel (2012). [Google Scholar]
  37. J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Science & Business Media (2013). [Google Scholar]
  38. S.A. Sauter and C. Schwab, Boundary Element Methods. In: Vol. 39 Springer Series in Computational Mathematics (2011). [CrossRef] [Google Scholar]
  39. G. Silva, C. Jerez-Hanckes and P. Fay, High-temperature tungsten-hafnia optimized selective thermal emitters for thermophotovoltaic applications. J. Quant. Spectrosc. Radiat. Transf. 231 (2019) 61–68. [CrossRef] [Google Scholar]
  40. G. Silva-Oelker, R. Aylwin, C. Jerez-Hanckes and P. Fay, Quantifying the impact of random surface perturbations on reflective gratings. IEEE Trans. Antennas Propag. 66 (2018) 838–847. [CrossRef] [Google Scholar]
  41. F. Starling and A.S. Bonnet-Bendhia, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Methods Appl. Sci. 17 (1994) 305–338. [CrossRef] [MathSciNet] [Google Scholar]
  42. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer Science & Business Media (2007). [Google Scholar]
  43. M. Taibleson, Fourier coefficients of functions of bounded variation. In: Vol. 18 Proc. Amer. Math. Soc. (1967). [Google Scholar]
  44. L.N. Trefethen, Spectral Methods in Matlab. In: Society for Industrial and Applied Mathematics, USA (2000). [Google Scholar]
  45. B. Zhang and S.N. Chandler-Wilde, A uniqueness result for scattering by infinite rough surfaces. SIAM J. Appl. Math. 58 (1998) 1774–1790. [Google Scholar]
  46. Y. Zhang and A. Gillman, A fast direct solver for two dimensional quasi-periodic multilayered medium scattering problems. Preprint arXiv:1907.06223 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you