Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2421 - 2443
DOI https://doi.org/10.1051/m2an/2021064
Published online 26 October 2021
  1. G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations. SIAM. J. Numer. Anal. 43 (2005) 2121–2143. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Bao, Y. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem. Arch. Ration. Mech. Anal. 229 (2018) 835–884. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. [Google Scholar]
  4. J.H. Bramble and J.E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comp. 76 (2007) 597–614. [Google Scholar]
  5. J.H. Bramble and J.E. Pasciak, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem. Math. Comput. 77 (2008) 1–10. [CrossRef] [Google Scholar]
  6. J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem. Int. J. Numer. Anal. Model. 9 (2012) 543–561. [MathSciNet] [Google Scholar]
  7. J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in ℝ2 and ℝ3. J. Comput. Appl. Math. 247 (2013) 209–230. [Google Scholar]
  8. J.H. Bramble, J.E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79 (2010) 2079–2101. [Google Scholar]
  9. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [Google Scholar]
  10. Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Model. 6 (2009) 124–146. [Google Scholar]
  11. J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77 (2007) 673–698. [CrossRef] [Google Scholar]
  12. Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43 (2005) 645–671. [Google Scholar]
  13. Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature. SIAM J. Math. Anal. 46 (2014) 3107–3130. [CrossRef] [MathSciNet] [Google Scholar]
  14. Z. Chen and J.C. Nédélec, On Maxwell equations with the transparent boundary condition. J. Comput. Math. 26 (2008) 284–296. [MathSciNet] [Google Scholar]
  15. Z. Chen and X. Wu, An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer. Math. TMA 1 (2008) 113–137. [CrossRef] [Google Scholar]
  16. Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50 (2012) 2632–2655. [Google Scholar]
  17. Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media. SIAM J. Numer. Anal. 48 (2010) 2158–2185. [Google Scholar]
  18. Z. Chen and W. Zheng, PML method for electromagnetic scattering problem in a two-layer medium. SIAM. J. Numer. Anal. 55 (2017) 2050–2084. [CrossRef] [MathSciNet] [Google Scholar]
  19. Z. Chen, T. Cui and L. Zhang, An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems. Numer. Math. 125 (2013) 639–677. [CrossRef] [MathSciNet] [Google Scholar]
  20. Z. Chen, X. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems. Math. Comp. 85 (2016) 2687–2714. [CrossRef] [MathSciNet] [Google Scholar]
  21. W.C. Chew and W.H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7 (1994) 599–604. [CrossRef] [Google Scholar]
  22. A.M. Cohen, Numerical Methods for Laplace Transform Inversion. Springer (2007). [Google Scholar]
  23. F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–2090. [Google Scholar]
  24. A.T. DeHoop, P.M. van den Berg and R.F. Remis, Absorbing boundary conditions and perfectly matched layers: an analytic time-domain performance analysis. IEEE Trans. Magn. 38 (2002) 657–660. [CrossRef] [Google Scholar]
  25. J. Diaz and P. Joly, A time domain analysis of PML models in acoustics. Comput. Methods Appl. Mech. Eng. 195 (2006) 3820–3853. [CrossRef] [Google Scholar]
  26. Y. Gao and P. Li, Analysis of time-domain scattering by periodic structures. J. Differ. Equ. 261 (2016) 5094–5118. [CrossRef] [Google Scholar]
  27. Y. Gao and P. Li, Electromagnetic scattering for time-domain Maxwell’s equations in an unbounded structure. Math. Models Methods Appl. Sci. 27 (2017) 1843–1870. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. Gao, P. Li and B. Zhang, Analysis of transient acoustic-elastic interaction in an unbounded structure. SIAM J. Math. Anal. 49 (2017) 3951–3972. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8 (1999) 47–106. [CrossRef] [Google Scholar]
  30. T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition II: convergence of the PML method. SIAM J. Math. Anal. 35 (2003) 547–560. [CrossRef] [MathSciNet] [Google Scholar]
  31. G.C. Hsiao, F.J. Sayas and R.J. Weinacht, Time-dependent fluid-structure interaction. Math. Method. Appl. Sci. 40 (2017) 486–500. [CrossRef] [Google Scholar]
  32. M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations. Computing 60 (1998) 229–241. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Li, L. Wang and A. Wood, Analysis of transient electromagnetic scattering from a three-dimensional open cavity. SIAM J. Appl. Math. 75 (2015) 1675–1699. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford Univ. Press, New York (2003). [Google Scholar]
  35. F.L. Teixeira and W.C. Chew, Advances in the theory of perfectly matched layers, edited by W.C. Chew et al. In: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Boston (2001) 283–346. [Google Scholar]
  36. F. Trèves, Basic Linear Partial Differential Equations. Academic Press, New York (1975). [Google Scholar]
  37. C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface. Sci. Chin. Math. 63 (2020) 887–906. [CrossRef] [Google Scholar]
  38. C. Wei, J. Yang and B. Zhang, Convergence of the perfectly matched layer method for transient acoustic-elastic interaction above an unbounded rough surfacePreprint: arXiv:1907.09703 (2019). [Google Scholar]
  39. C. Wei, J. Yang and B. Zhang, A time-dependent interaction problem between an electromagnetic field and an elastic body. Acta Math. Appl. Sin. Engl. Ser. 36 (2020) 95–118. [CrossRef] [MathSciNet] [Google Scholar]
  40. C. Wei, J. Yang and B. Zhang, Convergence analysis of the PML method for time-domain electromagnetic scattering problems. SIAM J. Numer. Anal. 58 (2020) 1918–1940. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you