Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 1803 - 1846
DOI https://doi.org/10.1051/m2an/2021038
Published online 17 September 2021
  1. E.J. Allen and H.D. Victory Jr, A computational investigation of the random particle method for numerical solution of the kinetic Vlasov–Poisson–Fokker–Planck equations. Phys. A: Stat. Mech. App. 209 (1994) 318–346. [Google Scholar]
  2. C. Anitescu, E. Atroshchenko, N. Alajlan and T. Rabczuk, Artificial neural network methods for the solution of second order boundary value problems. Comput. Mater. Continua 59 (2019) 345–359. [Google Scholar]
  3. A. Arnold, J.A. Carrillo, I. Gamba and C.-W. Shu, Low and high field scaling limits for the Vlasov- and Wigner–Poisson–Fokker–Planck systems. In: Vol. 30 of The Sixteenth International Conference on Transport Theory, Part I (Atlanta, GA, 1999) (2001) 121–153. [Google Scholar]
  4. A. Arnold, P. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems. In: Vol. 29 of Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998) (2000) 571–581. [Google Scholar]
  5. A.G. Baydin, B.A. Pearlmutter, A.A. Radul and J.M. Siskind, Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18 (2017) 43. [Google Scholar]
  6. Y.A. Berezin, V.N. Khudick and M.S. Pekker, Conservative finite-difference schemes for the Fokker-Planck equation not violating the law of an increasing entropy. J. Comput. Phys. 69 (1987) 163–174. [Google Scholar]
  7. P. Biler and J. Dolbeault, Long time behavior of solutions to Nernst–Planck and Debye–Hückel drift-diffusion systems. In: Vol. 1 of Annales Henri Poincaré. Springer (2000) 461–472. [Google Scholar]
  8. P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23 (1994) 1189–1209. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.L. Bonilla and J. Soler, High-field limit of the Vlasov–Poisson–Fokker–Planck system: a comparison of differential perturbation methods. Math. Models Methods Appl. Sci. 11 (2001) 1457–1468. [Google Scholar]
  10. L.L. Bonilla, J.A. Carrillo and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov–Poisson–Fokker–Planck system. SIAM J. Appl. Math. 57 (1997) 1343–1372. [Google Scholar]
  11. F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions. J. Funct. Anal. 111 (1993) 239–258. [Google Scholar]
  12. F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov–Fokker–Planck equation and of the Vlasov–Poisson–Fokker–Planck system with Coulombic and Newtonian potentials. Differ. Integral Equ. 8 (1995) 487–514. [Google Scholar]
  13. C. Buet and S. Cordier, Conservative and entropy decaying numerical scheme for the isotropic Fokker–Planck–Landau equation. J. Comput. Phys. 145 (1998) 228–245. [Google Scholar]
  14. C. Buet and S. Cordier, Numerical analysis of conservative and entropy schemes for the Fokker–Planck–Landau equation. SIAM J. Numer. Anal. 36 (1999) 953–973. [Google Scholar]
  15. C. Buet, S. Cordier, P. Degond and M. Lemou, Fast algorithms for numerical, conservative, and entropy approximations of the Fokker–Planck–Landau equation. J. Comput. Phys. 133 (1997) 310–322. [CrossRef] [Google Scholar]
  16. L. Caffarelli, J. Dolbeault, P.A. Markowich and C. Schmeiser, On Maxwellian equilibria of insulated semiconductors. Interfaces Free Bound. 2 (2000) 331–339. [Google Scholar]
  17. J.A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov–Poisson–Fokker–Planck system. Math. Methods Appl. Sci. 21 (1998) 907–938. [Google Scholar]
  18. J.A. Carrillo, J. Soler and J.L. Vázquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov–Poisson–Fokker–Planck system. J. Funct. Anal. 141 (1996) 99–132. [Google Scholar]
  19. L. Chacón, D.C. Barnes, D.A. Knoll and G.H. Miley, An implicit energy-conservative 2D Fokker-Planck algorithm. I. Difference scheme. J. Comput. Phys. 157 (2000) 618–653. [Google Scholar]
  20. N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. Kinet. Relat. Models 4 (2011) 441–477. [Google Scholar]
  21. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2 (1989) 303–314. [Google Scholar]
  22. P. Degond, Asymptotic-preserving schemes for fluid models of plasmas. In: Numerical Models for Fusion. Vol. 39/40 of Panor. Synthèses. Soc. Math. France, Paris (2013) 1–90. [Google Scholar]
  23. P. Degond and B. Lucquin-Desreux, An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory. Numer. Math. 68 (1994) 239–262. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Dimarco and L. Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 49 (2011) 2057–2077. [CrossRef] [MathSciNet] [Google Scholar]
  25. G. Dimarco and L. Pareschi, Numerical methods for kinetic equations. Acta Numer. 23 (2014) 369–520. [Google Scholar]
  26. J. Dolbeault, Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system. Math. Models Methods Appl. Sci. 1 (1991) 183–208. [Google Scholar]
  27. J. Dolbeault, Free energy and solutions of the Vlasov–Poisson–Fokker–Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. 78 (1999) 121–157. [Google Scholar]
  28. S.S. Dragomir, Some Grönwall Type Inequalities and Applications. Nova Science Publishers Inc., Hauppauge, NY (2003). [Google Scholar]
  29. K. Dressler, Stationary solutions of the Vlasov–Fokker–Planck equation. Math. Methods Appl. Sci. 9 (1987) 169–176. [Google Scholar]
  30. N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov–Poisson–Fokker–Planck system. Commun. Math. Sci. 8 (2010) 463–479. [Google Scholar]
  31. F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229 (2010) 7625–7648. [Google Scholar]
  32. F. Filbet and L. Pareschi, A numerical method for the accurate solution of the Fokker–Planck–Landau equation in the nonhomogeneous case. J. Comput. Phys. 179 (2002) 1–26. [Google Scholar]
  33. A. Flavell, M. Machen, B. Eisenberg, J. Kabre, C. Liu and X. Li, A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electron. 13 (2014) 235–249. [Google Scholar]
  34. K.-I. Funahashi, On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183–192. [CrossRef] [Google Scholar]
  35. H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113 (1986) 12–35. [Google Scholar]
  36. T. Goudon, Hydrodynamic limit for the Vlasov–Poisson–Fokker–Planck system: analysis of the two-dimensional case. Math. Models Methods Appl. Sci. 15 (2005) 737–752. [Google Scholar]
  37. T. Goudon, J. Nieto, F. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ. 213 (2005) 418–442. [Google Scholar]
  38. Y. Guo, H.J. Hwang, J.W. Jang and Z. Ouyang, The Landau equation with the specular reflection boundary condition. Arch. Ration. Mech. Anal. 236 (2020) 1389–1454. [Google Scholar]
  39. J. Han, C. Ma, Z. Ma and E. Weinan, Uniformly accurate machine learning-based hydrodynamic models for kinetic equations. Proc. Natl. Acad. Sci. USA 116 (2019) 21983–21991. [Google Scholar]
  40. K.J. Havlak and H.D. Victory Jr, The numerical analysis of random particle methods applied to Vlasov–Poisson–Fokker–Planck kinetic equations. SIAM J. Numer. Anal. 33 (1996) 291–317. [Google Scholar]
  41. M. Herda, On massless electron limit for a multispecies kinetic system with external magnetic field. J. Differ. Equ. 260 (2016) 7861–7891. [Google Scholar]
  42. K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (1991) 251–257. [CrossRef] [MathSciNet] [Google Scholar]
  43. K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359–366. [CrossRef] [Google Scholar]
  44. H.J. Hwang and J. Jang, On the Vlasov–Poisson–Fokker–Planck equation near Maxwellian. Discrete Contin. Dyn. Syst. Ser. B 18 (2013) 681–691. [Google Scholar]
  45. H.J. Hwang and J. Kim, The Vlasov–Poisson–Fokker–Planck equation in an interval with kinetic absorbing boundary conditions. Stochastic Process. Appl. 129 (2019) 240–282. [Google Scholar]
  46. H.J. Hwang and D. Phan, On the Fokker-Planck equations with inflow boundary conditions. Quart. Appl. Math. 75 (2017) 287–308. [Google Scholar]
  47. H.J. Hwang, J. Jang and J.J.L. Velázquez, The Fokker-Planck equation with absorbing boundary conditions. Arch. Ration. Mech. Anal. 214 (2014) 183–233. [Google Scholar]
  48. H.J. Hwang, J. Jang and J. Jung, On the kinetic Fokker-Planck equation in a half-space with absorbing barriers. Indiana Univ. Math. J. 64 (2015) 1767–1804. [Google Scholar]
  49. H.J. Hwang, J. Jang and J. Jung, The Fokker-Planck equation with absorbing boundary conditions in bounded domains. SIAM J. Math. Anal. 50 (2018) 2194–2232. [Google Scholar]
  50. H.J. Hwang, J. Jang and J.J.L. Velázquez, Nonuniqueness for the kinetic Fokker-Planck equation with inelastic boundary conditions. Arch. Ration. Mech. Anal. 231 (2019) 1309–1400. [Google Scholar]
  51. H.J. Hwang, J. Jang and J.J.L. Velázquez, On the structure of the singular set for the kinetic Fokker-Planck equations in domains with boundaries. Quart. Appl. Math. 77 (2019) 19–70. [Google Scholar]
  52. H.J. Hwang, J.W. Jang, H. Jo and J.Y. Lee, Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach. J. Comput. Phys. 419 (2020) 109665. [PubMed] [Google Scholar]
  53. Y. Hyon, B. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9 (2011) 459–475. [Google Scholar]
  54. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [Google Scholar]
  55. S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma (N.S.) 3 (2012) 177–216. [Google Scholar]
  56. S. Jin, L. Wang, An asymptotic preserving scheme for the Vlasov–Poisson–Fokker–Planck system in the high field regime. Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011) 2219–2232. [Google Scholar]
  57. S. Jin and B. Yan, A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation. J. Comput. Phys. 230 (2011) 6420–6437. [Google Scholar]
  58. H. Jo, H. Son, H.J. Hwang and E.H. Kim, Deep neural network approach to forward-inverse problems. Netw. Heterog. Media 15 (2020) 247–259. [Google Scholar]
  59. I.E. Lagaris, A. Likas and D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Networks 9 (1998) 987–1000. [Google Scholar]
  60. I.E. Lagaris, A. Likas and D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Networks 11 (2000) 1041–1049. [Google Scholar]
  61. X. Li, Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer. Neurocomputing 12 (1996) 327–343. [Google Scholar]
  62. H. Liu and Z. Wang, A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268 (2014) 363–376. [Google Scholar]
  63. H. Liu and Z. Wang, A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson–Nernst–Planck systems. J. Comput. Phys. 328 (2017) 413–437. [Google Scholar]
  64. L. Lu, X. Meng, Z. Mao and G.E. Karniadakis, Deepxde: a deep learning library for solving differential equations. Preprint arXiv:1907.04502 (2019). [Google Scholar]
  65. W.S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943) 115–133. [CrossRef] [MathSciNet] [Google Scholar]
  66. J. Nieto, F. Poupaud and J. Soler, High-field limit for the Vlasov–Poisson–Fokker–Planck system. Arch. Ration. Mech. Anal. 158 (2001) 29–59. [Google Scholar]
  67. L. Pareschi and G. Russo, Efficient asymptotic preserving deterministic methods for the Boltzmann equation, AVT-194 RTO AVT/VKI. In: Models and Computational Methods for Rarefied Flows. Lecture Series held at the von Karman Institute, Rhode St, Genese, Belgium (2011) 24–28. [Google Scholar]
  68. L. Pareschi, G. Russo and G. Toscani, Fast spectral methods for the Fokker–Planck–Landau collision operator. J. Comput. Phys. 165 (2000) 216–236. [Google Scholar]
  69. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga and A. Lerer, Automatic differentiation in Pytorch (2017). [Google Scholar]
  70. F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers. Asymptotic Anal. 4 (1991) 293–317. [Google Scholar]
  71. F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov–Fokker–Planck system. Math. Models Methods Appl. Sci. 10 (2000) 1027–1045. [Google Scholar]
  72. M. Raissi, P. Perdikaris and G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378 (2019) 686–707. [Google Scholar]
  73. G. Rein and J. Weckler, Generic global classical solutions of the Vlasov–Fokker–Planck–Poisson system in three dimensions. J. Differ. Equ. 99 (1992) 59–77. [Google Scholar]
  74. J. Schaeffer, Convergence of a difference scheme for the Vlasov–Poisson–Fokker–Planck system in one dimension. SIAM J. Numer. Anal. 35 (1998) 1149–1175. [CrossRef] [Google Scholar]
  75. J. Sirignano and K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375 (2018) 1339–1364. [Google Scholar]
  76. T. Sokalski, P. Lingenfelter and A. Lewenstam, Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials. J. Phys. Chem. B 107 (2003) 2443–2452. [Google Scholar]
  77. J. Soler, Asymptotic behaviour for the Vlasov–Poisson–Foker–Planck system. In: Vol. 30 of Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996) (1997) 5217–5228. [Google Scholar]
  78. H.D. Victory Jr and B.P. O’Dwyer, On classical solutions of Vlasov-Poisson Fokker–Planck systems. Indiana Univ. Math. J. 39 (1990) 105–156. [Google Scholar]
  79. G.-W. Wei, Q. Zheng, Z. Chen and K. Xia, Variational multiscale models for charge transport. SIAM Rev. 54 (2012) 699–754. [Google Scholar]
  80. S. Wollman and E. Ozizmir, Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in one dimension. J. Comput. Phys. 202 (2005) 602–644. [Google Scholar]
  81. S. Wollman and E. Ozizmir, A deterministic particle method for the Vlasov–Fokker–Planck equation in one dimension. J. Comput. Appl. Math. 213 (2008) 316–365. [Google Scholar]
  82. S. Wollman and E. Ozizmir, Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in two dimensions. J. Comput. Phys. 228 (2009) 6629–6669. [Google Scholar]
  83. H. Wu, T.-C. Lin and C. Liu, Diffusion limit of kinetic equations for multiple species charged particles. Arch. Ration. Mech. Anal. 215 (2015) 419–441. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you