Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 1779 - 1802
DOI https://doi.org/10.1051/m2an/2021039
Published online 17 September 2021
  1. M. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008) 593–601. [Google Scholar]
  2. I. Babuška and J. Osborn, Eigenvalue Problems, edited by J. Lions and P. Ciarlet, Vol. II. In: Handbook of numerical analysis, Finite element methods (Part 1), North-Holland, Amsterdam (1991) 641–787. [Google Scholar]
  3. R.E. Bank and T. Dupont, An optimal order process for solving finite element equations. Math. Comput. 36 (1981) 35–51. [Google Scholar]
  4. H. Bi and Y. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217 (2011) 9669–9678. [Google Scholar]
  5. H. Bi, Y. Zhang and Y. Yang, Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem. Comput. Math. Appl. 79 (2020) 1895–1913. [Google Scholar]
  6. J. Bramble and J. Osborn, Approximation of Steklov Eigenvalues of Non-selfadjoint Second Order Elliptic Operators, edited by A. Aziz, In: Mathematical foundations of the finite element method with applications to PDEs. Academic Press, New York (1972) 387–408. [Google Scholar]
  7. J. Bramble and J. Pasciak, New convergence estimates for multigrid algorithms. Math. Comput. 49 (1987) 311–329. [Google Scholar]
  8. S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
  9. F. Cakoni, D. Colton, S. Meng and P. Monk, Steklov eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. [Google Scholar]
  10. J.A. Canavati and A.A. Minzoni, A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69 (1979) 540–558. [Google Scholar]
  11. L. Cao, L. Zhang, W. Allegretto and Y. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media. SIAM J. Numer. Anal. 51 (2013) 273–296. [Google Scholar]
  12. C. Carstensen and J. Gedicke, An adaptive finite element eigenvalue solver of asymptotic quasi-Optimal computational complexity. SIAM J. Numer. Anal. 50 (2012) 1029–1057. [Google Scholar]
  13. J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. [Google Scholar]
  14. Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinous coefficients. SIAM J. Sci. Comput. 24 (2002) 443–462. [Google Scholar]
  15. H. Chen, H. Xie and F. Xu, A full multigrid method for eigenvalue problems. J. Comput. Phys. 322 (2016) 747–759. [Google Scholar]
  16. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  17. K. Cliffe, E. Hall and P. Houston, Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows. SIAM J. Sci. Comput. 31 (2008) 4607–4632. [Google Scholar]
  18. X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313–355. [Google Scholar]
  19. S. Giani and I.G. Graham, A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47 (2009) 1067–1091. [Google Scholar]
  20. W. Hackbusch, Multi-Grid Methods and Applications. Vol.4 of: Computational Mathematics. Springer-Verlag, Berlin-Heidelberg (1985). [Google Scholar]
  21. X. Han, H. Xie and F. Xu, A cascadic multigrid method for eigenvalue problem. J. Comput. Math. 35 (2017) 56–72. [Google Scholar]
  22. V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001) 107–138. [Google Scholar]
  23. Q. Hong, H. Xie and F. Xu, A Multilevel correction type of adaptive finite element method for eigenvalue problems. SIAM J. Sci. Comput. 40 (2018) A4208–A4235. [Google Scholar]
  24. G. Hu, H. Xie and F. Xu, A multilevel correction adaptive finite element method for Kohn-Sham equation. J. Comput. Phys. 355 (2018) 436–449. [Google Scholar]
  25. X. Ji, J. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60 (2014) 276–294. [Google Scholar]
  26. S. Jia, H. Xie, M. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59 (2016) 2037–2048. [Google Scholar]
  27. N. Kuznetsov, T. Kulczycki, M. Kwaśnicki, A. Nazarov, S. Poborchi, I. Polterovich and B. Siudeja, The legacy of Vladimir Andreevich Steklov. Not. Am. Math. Soc. 61 (2014) 9–22. [Google Scholar]
  28. Q. Lin and J. Lin, Finite Element Methods: Accuracy and Inprovement. Science Press, Beijing (2006). [Google Scholar]
  29. Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems. Math. Comput. 84 (2015) 71–88. [Google Scholar]
  30. J. Liu, Y. Liu and J. Sun, An inverse medium problem using Stekloff eigenvalues and a Bayesian approach. Inverse Prob. 35 (2019). [Google Scholar]
  31. J. Liu, J. Sun and T. Turner, Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem. J. Sci. Comput. 79 (2019) 1814–1831. [Google Scholar]
  32. J. Meng and L. Mei, Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. Appl. Math. Comput. 381 (2020) 125–307. [Google Scholar]
  33. P. Morin, R.H. Nochetto and K. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. [Google Scholar]
  34. A.D. Russo and A.E. Alonso, A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problem. Comput. Appl. Math. 62 (2011) 4100–4117. [Google Scholar]
  35. R. Verfürth, A Review of a Posteriori Error Estimation Andadaptive Mesh-refinement Techniques. Wiley-Teubner, New York (1996). [Google Scholar]
  36. H. Xie, A multigrid method for eigenvalue problem. J. Comput. Phys. 274 (2014) 550–561. [Google Scholar]
  37. H. Xie, A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014) 592–608. [Google Scholar]
  38. H. Xie and X. Wu, A multilevel correction method for interior transmission eigenvalue problem. J. Sci. Comput. 72 (2017) 586–604. [Google Scholar]
  39. H. Xie and M. Xie, A multigrid method for the ground state solution of Bose-Einstein condensates. Commun. Comput. Phys. 19 (2016) 648–662. [Google Scholar]
  40. H. Xie and M. Xie, Computable error estimates for ground state solution of Bose-Einstein condensates. J. Sci. Comput. 81 (2019) 1072–1087. [Google Scholar]
  41. H. Xie, M. Xie, X. Yin and M. Yue, Computable error estimates for a nonsymmetric eigenvalue problem. East Asian J. Appl. Math. 7 (2017) 583–602. [Google Scholar]
  42. H. Xie and Z. Zhang, A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods. arXiv:1505.06288 (2015). http://arxiv.org/abs/1505.06288. [Google Scholar]
  43. H. Xie and T. Zhou, A multilevel finite element method for Fredholm integral eigenvalue problems. J. Comput. Phys. 303 (2015) 173–184. [Google Scholar]
  44. F. Xu, H. Xie and N. Zhang, A parallel augmented subspace method for eigenvalue problems. SIAM J. Sci. Comput. 42 (2020) A2655–A2677. [Google Scholar]
  45. J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73 (2003) 1139–1152. [Google Scholar]
  46. F. Xu, M. Yue, Q. Huang and H. Ma, An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem. Appl. Numer. Math. 156 (2020) 210–227. [Google Scholar]
  47. Y. Yang, J. Han and H. Bi, Error estimates and a two grid scheme for approximating transmission eigenvalues. arXiv:1506.06486v2 (2016). http://arxiv.org/abs/1506.06486v2. [Google Scholar]
  48. M. Yue, H. Xie and M. Xie, A cascadic multigrid method for nonsymmetric eigenvalue problem. Appl. Numer. Math. 146 (2019) 55–72. [Google Scholar]
  49. Y. Zeng and F. Wang, A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Appl. Math. 62 (2017) 243–267. [Google Scholar]
  50. S. Zhang, Y. Xi and X. Ji, A multi-level mixed element method for the eigenvalue problem of biharmonic equation. J. Sci. Comput. 75 (2018) 1415–1444. [Google Scholar]
  51. Y. Zhang, H. Bi and Y. Yang, A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering. Int. J. Comput. Math. (2019). DOI:10.1080/00207160.2019.1622686. [PubMed] [Google Scholar]
  52. Z. Zhang and A. Naga, A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26 (2005) 1192–1213. [Google Scholar]
  53. O.C. Zienkiewicz and J. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int. J. Numer. Methods Eng. 33 (1992) 1331–1364. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you