Open Access
Volume 55, Number 5, September-October 2021
Page(s) 2045 - 2073
Published online 01 October 2021
  1. J. Aghili, S. Boyaval and D.A. Di Pietro, Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Meth. Appl. Math. 15 (2015) 111–134. [Google Scholar]
  2. J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numer. Math. 68 (1994) 437–456. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Beirão da Veiga, On the global regularity of shear thinning flows in smooth domains. J. Math. Anal. Appl. 349 (2009) 335–360. [Google Scholar]
  4. L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. [CrossRef] [EDP Sciences] [Google Scholar]
  5. L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. [Google Scholar]
  6. L. Belenki, L.C. Berselli, L. Diening and M. Růžička, On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal. 50 (2012) 373–397. [Google Scholar]
  7. L.C. Berselli and M. Růžička, Global regularity for systems with p-structure depending on the symmetric gradient. Adv. Nonlinear Anal. 9 (2020) 176–192. [Google Scholar]
  8. R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, 2nd edition. John Wiley, New York 1 (1987). [Google Scholar]
  9. D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). [Google Scholar]
  10. M. Bogovski, Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248 (1979) 1037–1040. [Google Scholar]
  11. L. Botti and D.A. Di Pietro, p-multilevel preconditioners for hho discretizations of the Stokes equations with static condensation. Commun. Appl. Math. Comput. (2021). Accepted for publication. [Google Scholar]
  12. M. Botti, D.A. Di Pietro and P. Sochala, A hybrid high-order method for nonlinear elasticity. SIAM J. Numer. Anal. 55 (2017) 2687–2717. [Google Scholar]
  13. M. Botti, D.A. Di Pietro and P. Sochala, A nonconforming high-order method for nonlinear poroelasticity. In: Finite Volumes for Complex Applications VIII – Hyperbolic, Elliptic and Parabolic Problems. Vol. 200 of Springer Proc. Math. Stat. Springer, Cham (2017) 537–545. [Google Scholar]
  14. M. Botti, D.A. Di Pietro and A. Guglielmana, A low-order nonconforming method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 354 (2019) 96–118. [Google Scholar]
  15. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). [CrossRef] [Google Scholar]
  16. D.A. Di Pietro and J. Droniou, A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86 (2017) 2159–2191. [CrossRef] [Google Scholar]
  17. D.A. Di Pietro and J. Droniou, Ws p-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray-Lions problems. Math. Models Methods Appl. Sci. 27 (2017) 879–908. [CrossRef] [Google Scholar]
  18. D.A. Di Pietro and J. Droniou, The Hybrid High-Order method for polytopal meshes. In: Number 19 in Modeling, Simulation and Application. Springer International Publishing (2020). [Google Scholar]
  19. D.A. Di Pietro and S. Krell, A Hybrid High-Order method for the steady incompressible Navier-Stokes problem. J. Sci. Comput. 74 (2018) 1677–1705. [Google Scholar]
  20. D.A. Di Pietro, A. Ern, A. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306 (2016) 175–195. [Google Scholar]
  21. D.A. Di Pietro, J. Droniou and G. Manzini, Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. J. Comput. Phys. 355 (2018) 397–425. [Google Scholar]
  22. D.A. Di Pietro, J. Droniou and A. Harnist, Improved error estimates for Hybrid High-Order discretizations of Leray-Lions problems. Calcolo 58 (2021) 1–24. [Google Scholar]
  23. L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008) 523–556. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. [Google Scholar]
  25. J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The gradient discretisation method. In: Vol. 82 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Cham (2018). [Google Scholar]
  26. R. Duran, M.A. Muschietti, E. Russ and P. Tchamitchian, Divergence operator and Poincaré inequalities on arbitrary bounded domains. Complex Var. Elliptic Equ. 55 (2010) 795–816. [Google Scholar]
  27. G.P. Galdi, R. Rannacher, A.M. Robertson and S. Turek, Mathematical problems in classical and non-newtonian fluid mechanics. In: Hemodynamical Flows. Vol. 37 of Oberwolfach Seminars. Birkhäuser (2008). [Google Scholar]
  28. G. Geymonat and P.M. Suquet, Functional spaces for Norton-Hoff materials. Math. Methods Appl. Sci. 8 (1986) 206–222. [Google Scholar]
  29. R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175–186. [Google Scholar]
  30. A. Hirn, Approximation of the p-Stokes equations with equal-order finite elements. J. Math. Fluid Mech. 15 (2013) 65–88. [Google Scholar]
  31. T. Isaac, G. Stadler and O. Ghattas, Solution of nonlinear Stokes equations discretized by high-order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics. SIAM J. Sci. Comput. 37 (2015) B804–B833. [Google Scholar]
  32. S. Ko and E. Süli, Finite element approximation of steady flows of generalized newtonian fluids with concentration-dependent power-law index. Math. Comput. 88 (2018) 1061–1090. [Google Scholar]
  33. S. Ko, P. Pustejovskáand E. Süli, Finite element approximation of an incompressible chemically reacting non-newtonian fluid. ESAIM: M2AN 52 (2018) 509–541. [Google Scholar]
  34. C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. ESAIM: M2AN 50 (2016) 1333–1369. [CrossRef] [EDP Sciences] [Google Scholar]
  35. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edition, Gordon Breach, New York (1969). [Google Scholar]
  36. W.M. Lai, S.C. Kuei and V.C. Mow, Rheological equations for synovial fluids. J. Biomech. Eng. 100 (1978) 169–186. [Google Scholar]
  37. J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, New York-Heidelberg I (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. [Google Scholar]
  38. J. Málek and K.R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of their generalizations. In: Evolutionary Equations. Vol. 2 of Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, 2005) 371–459. [Google Scholar]
  39. J. Málek, K.R. Rajagopal and M. Růžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci. 5 (1995) 789–812. [Google Scholar]
  40. D.C. Quiroz and D.A. Di Pietro, A Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces. Comput. Math. Appl. 79 (2020) 2655–2677. [Google Scholar]
  41. M. Růžička and L. Diening, Non-newtonian fluids and function spaces. In: Nonlinear Analysis, Function Spaces and Applications. Institute of Mathematics of the Academy of Sciences of the Czech Republic (2007) 95–143. [Google Scholar]
  42. D. Sandri, Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de carreau. ESAIM: M2AN 27 (1993) 131–155. [CrossRef] [EDP Sciences] [Google Scholar]
  43. D. Sandri, Numerical analysis of a four-field model for the approximation of a fluid obeying the power law or carreau’s law. Jpn J. Ind. Appl. Math. 31 (2014) 633–663. [CrossRef] [Google Scholar]
  44. G. Schubert, D.L. Turcotte and P. Olson, Mantle Convection in the Earth and Planets. Cambridge University Press (2001). [CrossRef] [Google Scholar]
  45. H.D. Ursell, Inequalities between sums of powers. Proc. London Math. Soc. 9 (1959) 432–450. [CrossRef] [Google Scholar]
  46. K. Yasuda, R.C. Armstrong and R.E. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 20 (1981) 163–178. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you