Open Access
Volume 55, Number 5, September-October 2021
Page(s) 2013 - 2044
Published online 29 September 2021
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press 140 (2003). [Google Scholar]
  2. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons 37 (2011). [Google Scholar]
  3. G.S. Alberti and Y. Capdeboscq, Elliptic regularity theory applied to time harmonic anisotropic Maxwell’s equations with less than Lipschitz complex coefficients. SIAM J. Math. Anal. 46 (2014) 998–1016. [CrossRef] [Google Scholar]
  4. G.S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems. Société Mathématique de France Paris 25 (2018). [Google Scholar]
  5. A. Allendes, E. Otárola, R. Rankin and A.J. Salgado, Adaptive finite element methods for an optimal control problem involving Dirac measures. Numer. Math. 137 (2017) 159–197. [CrossRef] [Google Scholar]
  6. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  7. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet] [Google Scholar]
  8. I. Babuška and M. Suri, The p and hp versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984) 75–102. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Beck, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN 34 (2000) 159–182. [CrossRef] [EDP Sciences] [Google Scholar]
  11. R. Becker and S. Mao, Quasi-optimality of an adaptive finite element method for an optimal control problem. Comput. Methods Appl. Math. Comput. Methods Appl. Math. 11 (2011) 107–128. [CrossRef] [Google Scholar]
  12. V. Bommer and I. Yousept, Optimal control of the full time-dependent maxwell equations. ESAIM: M2AN 50 (2016) 237–261. [Google Scholar]
  13. A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press (1998). [Google Scholar]
  14. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Springer Science & Business Media 15 (2007). [Google Scholar]
  15. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media (2010). [CrossRef] [Google Scholar]
  16. A. Bünger, V. Simoncini and M. Stoll, A low-rank matrix equation method for solving PDE-constrained optimization problems. Preprint arXiv:2005.14499 (2020). [Google Scholar]
  17. J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. [CrossRef] [Google Scholar]
  18. L. Chen, iFEM: An Innovative Finite Element Methods Package in MATLAB. University of Maryland (2008). [Google Scholar]
  19. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. [CrossRef] [EDP Sciences] [Google Scholar]
  21. W. Dorfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Duan, F. Qiu, R.C. Tan and W. Zheng, An adaptive FEM for a Maxwell interface problem. J. Sci. Comput. 67 (2016) 669–704. [CrossRef] [Google Scholar]
  23. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [CrossRef] [MathSciNet] [Google Scholar]
  24. L.C. Evans, Partial differential equations. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1998). [Google Scholar]
  25. Z. Fang, J. Li and X. Wang, Optimal control for electromagnetic cloaking metamaterial parameters design. Comput. Math. App. 79 (2020) 1165–1176. [Google Scholar]
  26. A. Gaevskaya, Y. Iliash, M. Kieweg and R.H.W. Hoppe, Convergence analysis of an adaptive finite element method for distributed control problems with control constraints. In: Control of Coupled Partial Differential Equations. Springer (2007) 47–68. [Google Scholar]
  27. W. Gong and N. Yan, Adaptive finite element method for elliptic optimal control problems: convergence and optimality. Numer. Math. 135 (2017) 1121–1170. [CrossRef] [Google Scholar]
  28. W. Gong, H. Liu and N. Yan, Adaptive finite element method for parabolic equations with Dirac measure. Comput. Methods Appl. Mech. Eng. 328 (2018) 217–241. [CrossRef] [Google Scholar]
  29. M. Hintermüller, R.H.W. Hoppe, Y. Iliash and M. Kieweg, An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: Control Optim. Calculus Variations 14 (2008) 540–560. [CrossRef] [EDP Sciences] [Google Scholar]
  30. M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. App. 30 (2005) 45–61. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36 (1998) 204–225. [CrossRef] [Google Scholar]
  32. R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483–2509. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Science & Business Media 305 (2013). [Google Scholar]
  34. R.H.W. Hoppe and J. Schöberl, Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27 (2009) 657–676. [CrossRef] [Google Scholar]
  35. R.H.W. Hoppe and I. Yousept, Adaptive edge element approximation of H(curl)-elliptic optimal control problems with control constraints. BIT Numer. Math. 55 (2015) 255–277. [CrossRef] [MathSciNet] [Google Scholar]
  36. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Faculty Sci. Univ. Tokyo. Sect. 1 A Math. 36 (1989) 479–490. [Google Scholar]
  37. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Siam 31 (1980). [Google Scholar]
  38. K. Kohls, A. Rosch and K.G. Siebert, A posteriori error analysis of optimal control problems with control constraints. SIAM J. Control Optim. 52 (2014) 1832–1861. [CrossRef] [Google Scholar]
  39. K. Kohls, K.G. Siebert and A. Rösch, Convergence of adaptive finite elements for optimal control problems with control constraints. In: Trends in PDE Constrained Optimization. Springer (2014) 403–419. [Google Scholar]
  40. K. Kohls, C. Kreuzer, A. Rösch and K.G. Siebert, Convergence of adaptive finite element methods for optimal control problems with control constraints. North-West. Eur. J. Math 4 (2018) 157–184. [Google Scholar]
  41. M. Kolmbauer and U. Langer, A robust preconditioned minres solver for distributed time-periodic eddy current optimal control problems. SIAM J. Sci. Comput. 34 (2012) B785–B809. [CrossRef] [Google Scholar]
  42. H. Leng and Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems on L2 errors. J. Sci. Comput. 73 (2017) 438–458. [CrossRef] [Google Scholar]
  43. H. Leng and Y. Chen, Convergence and quasi-optimality of an adaptive finite element method for optimal control problems with integral control constraint. Adv. Comput. Math. 44 (2018) 367–394. [CrossRef] [Google Scholar]
  44. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). [CrossRef] [Google Scholar]
  45. P. Morin, K.G. Siebert and A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18 (2008) 707–737. [CrossRef] [Google Scholar]
  46. S. Nicaise, S. Stingelin and F. Tröltzsch, On two optimal control problems for magnetic fields. Comput. Methods Appl. Math. 14 (2014) 555–573. [CrossRef] [MathSciNet] [Google Scholar]
  47. S. Nicaise, S. Stingelin and F. Tröltzsch, Optimal control of magnetic fields in flow measurement. Discrete Continuous Dyn. Syst.-S 8 (2015) 579. [CrossRef] [Google Scholar]
  48. R.H. Nochetto, A. Siebert and K.G. Veeser, Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 409–542. [CrossRef] [Google Scholar]
  49. D. Pauly and I. Yousept, A posteriori error analysis for the optimal control of magneto-static fields. ESAIM: M2AN 51 (2017) 2159–2191. [Google Scholar]
  50. J.W. Pearson and J. Gondzio, Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization. Numer. Math. 137 (2017) 959–999. [CrossRef] [PubMed] [Google Scholar]
  51. J.W. Pearson and A.J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra App. 19 (2012) 816–829. [CrossRef] [Google Scholar]
  52. J.W. Pearson, M. Stoll and A.J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix Anal. App. 33 (2012) 1126–1152. [CrossRef] [Google Scholar]
  53. J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633–649. [Google Scholar]
  54. C. Schwab, p- and hp-Finite Element Methods: Theory and Applications to Solid and Fluid Mechanics. Oxford University Press, Oxford (1998). [Google Scholar]
  55. M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization. SIAM J. Sci. Comput. 37 (2015) B1–B29. [CrossRef] [Google Scholar]
  56. M. Suri, The p and hp finite element method for problems on thin domains. J. Comput. Appl. Math. 128 (2001) 235–260. [CrossRef] [Google Scholar]
  57. B. Szabó and I. Babuška, Finite Element Analysis. John Wiley & Sons (1991). [Google Scholar]
  58. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. American Mathematical Society 112 (2010). [Google Scholar]
  59. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. [CrossRef] [MathSciNet] [Google Scholar]
  60. C. Weber and P. Werner, Regularity theorems for Maxwell’s equations. Math. Methods Appl. Sci. 3 (1981) 523–536. [CrossRef] [MathSciNet] [Google Scholar]
  61. Y. Xu and J. Zou, A convergent adaptive edge element method for an optimal control problem in magnetostatics. ESAIM: M2AN 51 (2017) 615–640. [CrossRef] [EDP Sciences] [Google Scholar]
  62. H.M. Yin, Regularity of weak solution to Maxwell’s equations and applications to microwave heating. J. Differ. Equ. 200 (2004) 137–161. [CrossRef] [Google Scholar]
  63. I. Yousept, Optimal control of quasilinear H(curl)-elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51 (2013) 3624–3651. [CrossRef] [MathSciNet] [Google Scholar]
  64. I. Yousept, Optimal control of non-smooth hyperbolic evolution Maxwell equations in type-II superconductivity. SIAM J. Control Optim. 55 (2017) 2305–2332. [CrossRef] [Google Scholar]
  65. I. Yousept, Hyperbolic Maxwell variational inequalities of the second kind. ESAIM: Control Optim. Calculus Variations 26 (2020) 34. [CrossRef] [EDP Sciences] [Google Scholar]
  66. I. Yousept, Well-posedness theory for electromagnetic obstacle problems. J. Differ. Equ. 269 (2020) 8855–8881. [CrossRef] [Google Scholar]
  67. L. Zhong, S. Shu, L. Chen and J. Xu, Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Linear Algebra App. 17 (2010) 415–432. [Google Scholar]
  68. L. Zhong, L. Chen, S. Shu, G. Wittum and J. Xu, Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comput. 81 (2012) 623–642. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you