Open Access
Volume 55, Number 5, September-October 2021
Page(s) 2169 - 2184
Published online 13 October 2021
  1. D.N. Arnold, Finite Element Exterior Calculus. SIAM (2018). [Google Scholar]
  2. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Arnold, R. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47 (2010) 281–354. [Google Scholar]
  4. S. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput. 77 (2008) 813–829. [CrossRef] [Google Scholar]
  5. M. Costabel and A. McIntosh, On Bogovski and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297–320. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Demkowicz and A. Buffa, H1, h(curl) and h(div)-conforming projection-based interpolation in three dimensions: Quasi-optimal p-interpolation estimates. Comput. Methods Appl. Mech. Eng. 194 (2005) 267–296. [Google Scholar]
  7. A. Demlow, Localized pointwise error estimates for mixed finite element methods. Math. Comput. 73 (2004) 1623–1653. [Google Scholar]
  8. A. Ern, T. Gudi, I. Smears and M. Vohralk, Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in h(div). Preprint: arXiv:1908.08158 (2019). [Google Scholar]
  9. R. Falk, R. Winther, Local bounded cochain projections. Math. Comput. 83 (2014) 2631–2656. [Google Scholar]
  10. R.S. Falk and R. Winther, Double complexes and local cochain projections. Numer. Methods Partial Differ. Equ. 31 (2015) 541–551. [PubMed] [Google Scholar]
  11. L. Gastaldi and R.H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. ESAIM: M2AN 23 (1989) 103–128. [Google Scholar]
  12. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order., Springer (2015). [Google Scholar]
  13. J. Guzmán and A.J. Salgado, Estimation of the continuity constants for Bogovskii and regularized Poincaré integral operators. Preprint: arXiv:2010.04105 (2020). [Google Scholar]
  14. J. Melenk and C. Rojik, On commuting p-version projection-based interpolation on tetrahedra. Math. Comput. 89 (2020) 45–87. [Google Scholar]
  15. J. Schöberl, A multilevel decomposition result in h(curl)In: Proceedings from the 8th European Multigrid, Multilevel, and Multiscale Conference, edited by P.H.P. Wesseling and C.W. Oosterlee. [Google Scholar]
  16. H. Whitney, Geometric Integration Theory. Dover Publications (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you