Open Access
Issue
ESAIM: M2AN
Volume 55, Number 5, September-October 2021
Page(s) 2185 - 2210
DOI https://doi.org/10.1051/m2an/2021052
Published online 13 October 2021
  1. R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31 (2009) 1603–1627. [Google Scholar]
  2. R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759–2763. [Google Scholar]
  3. C. Adduce, G. Sciortino and S. Proietti, Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment. J. Hydraulic Eng. 138 (2012) 111–121. [Google Scholar]
  4. J.R. Apel, H.M. Byrne, J.R. Proni and R.L. Charnell, Observations of oceanic internal and surface waves from the earth resources technology satellite. J. Geophys. Res. 80 (1975) 865–881. [Google Scholar]
  5. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
  6. J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. M2AN Math. Model. Numer. Anal. 43 (2009) 333–351. [Google Scholar]
  7. J. Balbás and G. Hernandez-Duenas, A positivity preserving central scheme for shallow water flows in channels with wet-dry states. ESAIM: M2AN 48 (2014) 665–696. [Google Scholar]
  8. J. Balbás and S. Karni, A non-oscillatory central scheme for one-dimensional two-layer shallow water flows along channels with varying width. J. Sci. Comput. 55 (2013) 499–528. [Google Scholar]
  9. A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56 (2013) 267–290. [Google Scholar]
  10. F. Bouchut and T.M. de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683–698. [Google Scholar]
  11. M. Castro, J. Macas and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. M2AN. Math. Model. Numer. Anal. 35 (2001) 107–127. [Google Scholar]
  12. M.J. Castro, J.A. Garca-Rodrguez, J.M. González-Vida, J. Macas, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [Google Scholar]
  13. M.J. Castro, J.A. Garca-Rodrguez, J.M. González-Vida, J. Macas and C. Parés, Improved FVM for two-layer shallow-water models: application to the Strait of Gibraltar. Adv. Eng. Softw. 38 (2007) 386–398. [Google Scholar]
  14. M.J. Castro-Daz, E.D. Fernández-Nieto, J.M. González-Vida and C. Parés-Madroñal, Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system. J. Sci. Comput. 48 (2011) 16–40. [Google Scholar]
  15. A. Chertock, A. Kurganov, Z. Qu and T. Wu, Three-layer approximation of two-layer shallow water equations. Math. Modell. Anal. 18 (2013) 675–693. [Google Scholar]
  16. A. Chiapolino and R. Saurel, Models and methods for two-layer shallow water flows. J. Comput. Phys. 371 (2018) 1043–1066. [Google Scholar]
  17. G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [Google Scholar]
  18. P. Garcia-Navarro and M.E. Vazquez-Cendon, On numerical treatment of the source terms in the shallow water equations. Comput. Fluids 29 (2000) 951–979. [Google Scholar]
  19. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [Google Scholar]
  20. A.A. Khan and W. Lai, Modeling Shallow Water Flows Using the Discontinuous Galerkin Method. CRC Press (2014). [Google Scholar]
  21. J. Kim, R.J. LeVeque, Two-layer shallow water system and its applications. In: Hyperbolic Problems: Theory, Numerics and Applications. Vol. 67 of Proc. Sympos. Appl. Math. Am. Math. Soc., Providence, RI (2009) 737–743. [Google Scholar]
  22. A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. M2AN Math. Model. Numer. Anal. 36 (2002) 397–425. [Google Scholar]
  23. A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. [Google Scholar]
  24. A. Kurganov and G. Petrova, Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31 (2009) 1742–1773. [Google Scholar]
  25. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [Google Scholar]
  26. A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. [Google Scholar]
  27. P.G. LeFloch, Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). The theory of classical and nonclassical shock waves. [Google Scholar]
  28. P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyperbolic Differ. Equ. 1 (2004) 643–689. [Google Scholar]
  29. O.A. Oleinik, Discontinuous solutions of non-linear differential equations. Uspekhi Matematicheskikh Nauk 12 (1957) 3–73. [Google Scholar]
  30. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. [Google Scholar]
  31. B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method [J. Comput. Phys. 32 (1979) 101–136]. J. Comput. Phys. 1351997 (1979) 227–248. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you