Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 2705 - 2723
DOI https://doi.org/10.1051/m2an/2021073
Published online 17 November 2021
  1. A. Aggarwal, R.M. Colombo and P. Goatin, Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53 (2015) 963–983. [Google Scholar]
  2. P. Amorim, R.M. Colombo and A. Teixeira, On the numerical integration of scalar nonlocal conservation laws. ESAIM: M2AN 49 (2015) 19–37. [CrossRef] [EDP Sciences] [Google Scholar]
  3. F. Betancourt, R. Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. [Google Scholar]
  5. A. Bressan and W. Shen, On traffic flow with nonlocal flux: a relaxation representation. Arch. Rat. Mech. Anal. 237 (2020) 1213–1236. [CrossRef] [Google Scholar]
  6. A. Bressan and W. Shen, Entropy admissibility of the limit solution for a nonlocal model of traffic flow. Comm. Math. Sci. 19 (2021) 1447–1450. [CrossRef] [Google Scholar]
  7. F.A. Chiarello and P. Goatin, Non-local multi-class traffic flow models. Netw. Heterog. Media 14 (2019) 371–387. [Google Scholar]
  8. G.M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer and L. Pflug, A general result on the approximation of local conservation laws by nonlocal conservation laws: the singular limit problem for exponential kernel. Preprint arXiv:2012.13203 (2020). [Google Scholar]
  9. G.M. Coclite, N. De Nitti, A. Keimer and L. Pflug, Singular limits with vanishing viscosity for nonlocal conservation laws. Nonlinear Anal. Theory Methods App. 211 (2021) 112370. [CrossRef] [Google Scholar]
  10. R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Colombo, G. Crippa and L.V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes. Arch. Rat. Mech. Anal. 233 (2019) 1131–1167. [CrossRef] [Google Scholar]
  12. M. Colombo, G. Crippa, E. Marconi and L.V. Spinolo, Local limit of nonlocal traffic models: convergence results and total variation blow-up. Ann. Inst. Henri Poincaré Anal. Non Linéaire 38 (2021) 1653–1666. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 523–537. [CrossRef] [Google Scholar]
  14. J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media 13 (2018) 531–547. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Goatin and S. Scialanga, Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Netw. Heterog. Media 11 (2016) 107–121. [Google Scholar]
  16. A. Keimer and L. Pflug, On approximation of local conservation laws by nonlocal conservation laws. J. Math. Anal. App. 475 (2019) 1927–1955. [CrossRef] [Google Scholar]
  17. S.N. Kružkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. [Google Scholar]
  18. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). [Google Scholar]
  19. S. Osher, Riemann solvers, the entropy condition, and difference. SIAM J. Numer. Anal. 21 (1984) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43 (1984) 369–381. [Google Scholar]
  21. E. Tadmor, Chapter 18 – Entropy stable schemes. In: Handbook of Numerical Methods for Hyperbolic Problems, edited by R. Abgrall and C.-W. Shu. Vol. 17 of Handbook of Numerical Analysis . Elsevier (2016) 467–493. [Google Scholar]
  22. K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions. Quart. Appl. Math. 57 (1999) 573–600. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you