Open Access
Volume 55, Number 6, November-December 2021
Page(s) 2725 - 2758
Published online 25 November 2021
  1. A.K. Alzahrani, Importance of Darcy-Forchheimer porous medium in 3D convective flow of carbon nanotubes. Phys. Lett. A 382 (2018) 2938–2943. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Ambartsumyan, E. Khattatov, T. Nguyen and I. Yotov, Flow and transport in fractured poroelastic media. GEM Int. J. Geomath. 10 (2019) 34. [Google Scholar]
  3. J.W. Barrett and W.B. Liu, Finite element approximation of the p-Laplacian. Math. Comput. 61 (1993) 523–537. [Google Scholar]
  4. G.A. Benavides, S. Caucao, G.N. Gatica and A.A. Hopper, A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech. Eng. 371 (2020) 113285. [CrossRef] [Google Scholar]
  5. G.A. Benavides, S. Caucao, G.N. Gatica and A.A. Hopper, A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem. Preprint 2020-21, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile (2020). [Google Scholar]
  6. M.M. Bhatti, A. Zeeshan, R. Ellahi and G.C. Shit, Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy–Brinkman–Forchheimer porous medium. Adv. Powder Tech. 29 (2018) 1189–1197. [CrossRef] [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  8. H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1 (1949) 27–34. [CrossRef] [Google Scholar]
  9. R. Bürger, P.E. Méndez and R. Ruiz-Baier, On H(div)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal. 57 (2019) 1318–1343. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018) 114–130. [CrossRef] [MathSciNet] [Google Scholar]
  11. J. Camaño, C. García and R. Oyarzúa, Analysis of a conservative mixed-FEM for the stationary Navier-Stokes problem. Numer. Methods Part. Differ. Equ. 37 (2021) 2895–2923. [CrossRef] [Google Scholar]
  12. S. Caucao and I. Yotov, A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations. IMA J. Numer. Anal. 41 (2021) 2708–2743. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Caucao, M. Discacciati, G.N. Gatica and R. Oyarzúa, A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. ESAIM: M2AN 54 (2020) 1689–1723. [EDP Sciences] [Google Scholar]
  14. S. Caucao, G.N. Gatica, R. Oyarzúa and N. Sánchez, A fully-mixed formulation for the steady double-diffusive convection system based upon Brinkman-Forchheimer equations. J. Sci. Comput. 85 (2020) 37. [CrossRef] [Google Scholar]
  15. S. Caucao, R. Oyarzúa and S. Villa-Fuentes, A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo 57 (2020) 39. [CrossRef] [Google Scholar]
  16. A.O. Celebi, V.K. Kalantarov and D. Ugurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett. 19 (2006) 801–807. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Colmenares, G.N. Gatica and R. Oyarzúa, Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. C. R. Math. Acad. Sci. Paris 354 (2016) 57–62. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Colmenares, G.N. Gatica and S. Moraga, A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM: M2AN 54 (2020) 1525–1568. [CrossRef] [EDP Sciences] [Google Scholar]
  19. E. Colmenares, G.N. Gatica, S. Moraga and R. Ruiz-Baier, A fully-mixed finite element method for the steady state Oberbeck-Boussinesq system. SMAI J. Comput. Math. 6 (2020) 125–157. [CrossRef] [MathSciNet] [Google Scholar]
  20. T.A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30 (2004) 196–199. [Google Scholar]
  21. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  22. J. Faulkner, B.X. Hu, S. Kish and F. Hua, Laboratory analog and numerical study of ground water flow and solute transport in a karst aquifer with conduit and matrix domains. J. Contam. Hydrol. 110 (2009) 34–44. [CrossRef] [Google Scholar]
  23. P. Forchheimer, Wasserbewegung durch boden. Z. Ver. Deutsch Ing. 45 (1901) 1782–1788. [Google Scholar]
  24. G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). [CrossRef] [Google Scholar]
  25. G.N. Gatica, G.C. Hsiao and S. Meddahi, Further developments on boundary-field equation methods for nonlinear transmission problems. J. Math. Anal. Appl. 502 (2021) 125262. [CrossRef] [Google Scholar]
  26. V. Girault and P.A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  27. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  28. P.N. Kaloni and J. Guo, Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl. 204 (1996) 138–155. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Ôtani and S. Uchida, Global solvability of some double-diffusive convection system coupled with Brinkman-Forchheimer equations. Lib. Math. (N.S.) 33 (2013) 79–107. [MathSciNet] [Google Scholar]
  30. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1994). [CrossRef] [Google Scholar]
  31. S. Safi and S. Benissaad, Double-diffusive convection in an anisotropic porous layer using the Darcy–Brinkman–Forchheimer formulation. Arch. Mech. (Arch. Mech. Stos.) 70 (2018) 89–102. [MathSciNet] [Google Scholar]
  32. Y.J. Zhuang, H.Z. Yu and Q.Y. Zhu, A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Trans. 115-B (2017) 670–694. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you