Open Access
Volume 55, Number 6, November-December 2021
Page(s) 2567 - 2608
Published online 15 November 2021
  1. G. Alldredge and F. Schneider, A realizability-preserving discontinuous Galerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension. J. Comput. Phys. 295 (2015) 665–684. [CrossRef] [MathSciNet] [Google Scholar]
  2. G.W. Alldredge, C.D. Hauck and A.L. Tits, High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem. SIAM J. Sci. Comput. 34 (2012) B361–B391. [Google Scholar]
  3. G.W. Alldredge, C.D. Hauck, D.P. O’Leary and A.L. Tits, Adaptive change of basis in entropy-based moment closures for linear kinetic equations. J. Comput. Phys. 258 (2014) 489–508. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.W. Alldredge, M. Frank and C.D. Hauck, A regularized entropy-based moment method for kinetic equations. SIAM J. Appl. Math. 79 (2019) 1627–1653. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney and D. Sorensen, LAPACK Users’ Guide, 3rd edition. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999). [CrossRef] [Google Scholar]
  6. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82 (2008) 121–138. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82 (2008) 103–119. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Bogacki and L.F. Shampine, A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2 (1989) 321–325. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Boltzmann, Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften. Mathematische-Naturwissenschaftliche Klasse 66 (1872) 275–370. [Google Scholar]
  10. R. Borsche, A. Klar and F. Schneider, Kinetic and moment models for cell motion in fiber structures. In: Vol. 2 of Active Particles. Model. Simul. Sci. Eng. Technol. Birkhäuser/Springer, Cham (2019) 1–38. [Google Scholar]
  11. T.A. Brunner and J.P. Holloway, Two-dimensional time dependent riemann solvers for neutron transport. J. Comput. Phys. 210 (2005) 386–399. [CrossRef] [MathSciNet] [Google Scholar]
  12. S.R. Buss and J.P. Fillmore, Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graphics 20 (2001) 95–126. [CrossRef] [Google Scholar]
  13. C. Cercignani, The Boltzmann Equation and its Applications. Vol. 67 of Applied Mathematical Sciences. Springer, New York, New York, NY (1988). [CrossRef] [Google Scholar]
  14. P. Chidyagwai, M. Frank, F. Schneider and B. Seibold, A comparative study of limiting strategies in discontinuous Galerkin schemes for the M1 model of radiation transport. J. Comput. Appl. Math. 342 (2018) 399–418. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Conde, I. Fekete and J.N. Shadid, Embedded error estimation and adaptive step-size control for optimal explicit strong stability preserving Runge-Kutta methods. arXiv:1806.08693 (2018). [Google Scholar]
  16. R.E. Curto and L.A. Fialkow, Recursiveness, positivity, and truncated moment problems. Houston J. Math. 17 (1991) 603–635. [MathSciNet] [Google Scholar]
  17. J.R. Dormand and P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation. C. R. Acad. Sci. Paris Ser. I 329 (1999) 915–920. [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Dubroca and A. Klar, Half-moment closure for radiative transfer equations. J. Comput. Phys. 180 (2002) 584–596. [CrossRef] [Google Scholar]
  20. M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative heat transfer. J. Comput. Phys. 218 (2006) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
  21. K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. USA 68 (1971) 1686–1688. [CrossRef] [PubMed] [Google Scholar]
  22. B.D. Ganapol, R.S. Baker, J.A. Dahl and R.E. Alcouffe, Homogeneous infinite media time-dependent analytical benchmarks. Tech. Rep. LA-UR-01-1854. Los Alamos National Laboratory (2001). [Google Scholar]
  23. C.K. Garrett and C.D. Hauck, A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transp. Theory Stat. Phys. 42 (2013) 203–235. [CrossRef] [Google Scholar]
  24. M.B. Giles, Collected matrix derivative results for forward and reverse mode algorithmic differentiation. In: C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann and J. Utke (Eds). Advances in Automatic Differentiation. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008) 35–44. [CrossRef] [Google Scholar]
  25. S. Gottlieb, On High Order Strong Stability Preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25 (2005) 105–128. [MathSciNet] [Google Scholar]
  26. G. Guennebaud, B. Jacob, et al., Eigen v3 (2010). [Google Scholar]
  27. K.P. Hadeler, Reaction transport systems in biological modelling. In: Mathematics Inspired by Biology, edited by V. Capasso. Lecture Notes in Mathematics. Springer Berlin Heidelberg (1999). [Google Scholar]
  28. E. Hairer, G. Wanner and S.P. Nørsett, Springer Series in Computational Mathematics, 2nd revised edition. Springer-Verlag Berlin Heidelberg (1993). [Google Scholar]
  29. C.D. Hauck, High-order entropy-based closures for linear transport in slab geometry. Commun. Math. Sci. 9 (2010) 187–205. [Google Scholar]
  30. T. Hillen and K.J. Painter, Transport and anisotropic diffusion models for movement in oriented habitats. In: Dispersal, Individual Movement and Spatial Ecology, edited by M.A. Lewis, P.K. Maini and S.V. Petrovskii. Vol. 2071 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). 177–222. [CrossRef] [Google Scholar]
  31. C. Himpe, T. Leibner and S. Rave, Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40 (2018) A3267–A3292. [CrossRef] [Google Scholar]
  32. Intel, Threading building blocks (2020). [Google Scholar]
  33. M. Junk, Maximum entropy for reduced moment problems. Math. Models Methods Appl. Sci. 10 (2000) 1001–1025. [CrossRef] [MathSciNet] [Google Scholar]
  34. C. Kristopher Garrett, C. Hauck and J. Hill, Optimization and large scale computation of an entropy-based moment closure. J. Comput. Phys. 302 (2015) 573–590. [CrossRef] [MathSciNet] [Google Scholar]
  35. K. Lanckau and C. Cercignani, The Boltzmann equation and its applications. ZAMM – J. Appl. Math. Mech./Z. Ang. Math. Mech. 69 (1989) 423. [CrossRef] [Google Scholar]
  36. T. Langer, A. Belyaev and H.-P. Seidel, Spherical barycentric coordinates. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing (2006)) pp. 81–88. [Google Scholar]
  37. T. Leibner and M. Ohlberger, Replication data for: a new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations (2021). [Google Scholar]
  38. C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065. [Google Scholar]
  39. E.E. Lewis and W.F. Miller, Jr, Computational Methods in Neutron Transport. John Wiley and Sons, New York (1984). [Google Scholar]
  40. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations. Springer-Verlag, Vienna (1990). [CrossRef] [Google Scholar]
  41. D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics. Dover (1999). [Google Scholar]
  42. R. Milk, F. Schindler and T. Leibner, Dune-xt (2017). [Google Scholar]
  43. R. Milk, F. Schindler and T. Leibner, Extending dune: the dune-xt modules. Arch. Numer. Softw. 5 (2017) 193–216. [Google Scholar]
  44. G. Minerbo, Ment: a maximum entropy algorithm for reconstructing a source from projection data. Comput. Graphics Image Process. 10 (1979) 48–68. [CrossRef] [Google Scholar]
  45. G.N. Minerbo, Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Trans. 20 (1978) 541–545. [CrossRef] [Google Scholar]
  46. E. Olbrant, C.D. Hauck and M. Frank, A realizability-preserving discontinuous Galerkin method for the M1 model of radiative transfer. J. Comput. Phys. 231 (2012) 5612–5639. [CrossRef] [MathSciNet] [Google Scholar]
  47. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods For Partial Differential Equations. Vol. 92 of Unitext. An Introduction, La Matematica per il 3+2. Springer, Cham (2016). [Google Scholar]
  48. H. Ranocha, M. Sayyari, L. Dalcin, M. Parsani and D.I. Ketcheson, Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. SIAM J. Sci. Comput. 42 (2020) A612–A638. [CrossRef] [Google Scholar]
  49. J. Ritter, A. Klar and F. Schneider, Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions. J. Comput. Appl. Math. 306 (2016) 300–315. [CrossRef] [MathSciNet] [Google Scholar]
  50. R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). [Google Scholar]
  51. R.M. Rustamov, Barycentric coordinates on surfaces. Eurographics Symp. Geom. Process. 29 (2010) 1507–1516. [Google Scholar]
  52. R.P. Schaerer, P. Bansal and M. Torrilhon, Efficient algorithms and implementations of entropy-based moment closures for rarefied gases. J. Comput. Phys. 340 (2017) 138–159. [CrossRef] [MathSciNet] [Google Scholar]
  53. C. Schär and P.K. Smolarkiewicz, A synchronous and iterative flux-correction formalism for coupled transport equations. J. Comput. Phys. 128 (1996) 101–120. [CrossRef] [MathSciNet] [Google Scholar]
  54. F. Schindler, dune-gdt (2017). [Google Scholar]
  55. F. Schneider, First-order quarter- and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions: Code (2016). DOI: 10.5281/zenodo.48753. [Google Scholar]
  56. F. Schneider, Implicit-explicit, realizability-preserving first-order scheme for moment models with lipschitz-continuous source terms. Preprint arXiv:1611.01314 (2016). [Google Scholar]
  57. F. Schneider, Kershaw closures for linear transport equations in slab geometry II: high-order realizability-preserving discontinuous-Galerkin schemes. J. Comput. Phys. 322 (2016) 920–935. [CrossRef] [MathSciNet] [Google Scholar]
  58. F. Schneider, Moment Models in Radiation Transport Equations. Verlag Dr. Hut (2016). [Google Scholar]
  59. F. Schneider and T. Leibner, First-order continuous- and discontinuous-galerkin moment models for a linear kinetic equation: model derivation and realizability theory. J. Comput. Phys. 416 (2020) 109547. [CrossRef] [MathSciNet] [Google Scholar]
  60. F. Schneider, G.W. Alldredge, M. Frank and A. Klar, Higher order mixed-moment approximations for the Fokker-Planck equation in one space dimension. SIAM J. Appl. Math. 74 (2014) 1087–1114. [CrossRef] [MathSciNet] [Google Scholar]
  61. F. Schneider, G.W. Alldredge and J. Kall, A realizability-preserving high-order kinetic scheme using weno reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinet. Relat. Models 9 (2016) 193. [Google Scholar]
  62. F. Schneider, A. Roth and J. Kall, First-order quarter- and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinet. Relat. Models 10 (2017) 1127–1161. [CrossRef] [MathSciNet] [Google Scholar]
  63. F. Schneider and T. Leibner, First-order continuous- and discontinuous-galerkin moment models for a linear kinetic equation: realizability-preserving splitting scheme and numerical analysis. Preprint arXiv:1904.03098 (2019). [Google Scholar]
  64. B. Seibold and M. Frank, StaRMAP – a second order staggered grid method for spherical harmonics moment equations of radiative transfer. ACM Trans. Math. Softw. 41 (2014) 1–28. [CrossRef] [Google Scholar]
  65. X. Zhang and C.W. Shu, On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229 (2010) 8918–8934. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you