Open Access
Volume 55, Number 6, November-December 2021
Page(s) 2609 - 2642
Published online 11 November 2021
  1. A. Arsenev, Existence in the large of a weak solution of Vlasov’s system of equations. Mat. Mat. Fiz. 15 (1975) 136–147. [Google Scholar]
  2. M. Badsi, Etude mathématique et simulation numérique de modèles de gaines bi-cinétiques. Ph.D. thesis, Université Pierre et Marie Curie, Paris (2016). [Google Scholar]
  3. M. Badsi, Linear electron stability for a bi-kinetic sheath model. J. Math. Anal. Appl. 453 (2017) 954–872. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Badsi, M. Campos Pinto and B. Després, A minimization formulation of a bikinetic sheath. Kinet. Relat. Models 9 (2016) 621–656. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Badsi, M. Merhemberger and L. Navoret, Numerical stability of plasma sheath. ESAIM: Proc. 64 (2018) 17–36. [CrossRef] [EDP Sciences] [Google Scholar]
  6. C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data. Ann. Inst. Henri Poincaré 2 (1985) 101–118. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Ben Abdallah, Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system. M2AS 17 (1994) 451–476. [Google Scholar]
  8. D. Bohm, The characteristics of electrical discharges in magnetic fields. McGraw Hill, New York (1949). [Google Scholar]
  9. M. Bostan, Existence and uniqueness of the mild solution for the 1D Vlasov-Poisson initial-boundary value problem. SIAM J. Math. Anal. 37 (2005) 156–188. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Bostan, Gyrokinetic models for strongly magnetized plasmas with general magnetic shape. Discrete Contin. Dyn. Syst 5 (2012) 257–269. [Google Scholar]
  11. A. Bottino and E. Sonnendrucker, Monte Carlo particle-in-cell methods for the simulations of the Vlasov-Maxwell gyrokinetic equations. J. Plasma Phys. 81 (2015) 435810501. [CrossRef] [Google Scholar]
  12. Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Diff. Equ. 25 (2000) 737–754. [CrossRef] [Google Scholar]
  13. A.J. Brizard and J.W. Burby, Gauge-free electromagnetic gyrokinetic theory. Phys. Lett. 18 (2019) 2172–2175. [Google Scholar]
  14. R. Chalise and R. Khanal, A kinetic trajectory simulation model for magnetized plasma sheath. Plasma Phys. Control. Fusion 54 (2012) 095006. [CrossRef] [Google Scholar]
  15. F.F. Chen, Introduction to Plasma Physics and controlled fusion. Springer (1984). [CrossRef] [Google Scholar]
  16. R. Chodura, Plasma-wall transition in an oblique magnetic field. AIP Publishing (1982). [Google Scholar]
  17. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. math. 136 (2012) 521–573. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Feldman, S.Y. Ha and M. Slemrod, A geometric level-set formulation of a plasma sheat interface. Arch. Rat. Mech. Anal. 178 (2005) 81–123. [CrossRef] [Google Scholar]
  19. E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation. SIAM J. Math. Anal. 32 (2001) 1227–1247. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.P. Friedberg, Plasma Physics and Fusion Energy. Cambridge University Press (2007). [CrossRef] [Google Scholar]
  21. X. Garvet, P. Mantica, C. Angioni and E. Asp, Physics of transport in tokamaks. Plasma Phys. Control. Fusion 46 (2004) B557–B574. [CrossRef] [Google Scholar]
  22. P. Ghendrih, M. Hauray and A. Nouri, Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions. Kinet. Relat. Models 2 (2009) 707–725. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag (1984). [CrossRef] [Google Scholar]
  24. V. Grandgirard and Y. Sarazin, Gyrokinetic simulations of magnetic fusion plasmas. Numerical models for fusion 39 (2013) 91–176. [Google Scholar]
  25. E. Grenier, Oscillatory limits with varying spectrum. In: Congrès National de Mathématiques Appliquées et Industrielles, Volume 35 of ESAIM Proc. EDP Sciences. Les Ulis (2011) pp. 46–58. [Google Scholar]
  26. Y. Guo, Regularity for the Vlasov equations in a half space. Indiana Univ. Math. J. 43 (1994) 255–320. [CrossRef] [MathSciNet] [Google Scholar]
  27. Y. Guo, The dynamics of a plane diode. SIAM J. Math. Anal. 35 (2004) 1617–1635. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.-H. Hwang and J. Schaeffer, Uniqueness for weak solutions of a one-dimensional boundary value problem for the Vlasov-Poisson system. J. Diff. Equ. 244 (2008) 2665–2691. [CrossRef] [Google Scholar]
  29. H.-J. Hwang, J.J.L. Velazquez, Global existence for the Vlasov-Poisson system in bounded domains. Arch. Rat. Mech. Anal. 195 (2010) 763–796. [CrossRef] [Google Scholar]
  30. J. Kromes, Dielectric response and thermal fluctuations in gyrokinetic plasma. Phys. Fluids B Plasma Phys. 5 (1993) 1066. [CrossRef] [Google Scholar]
  31. E. Lieb and M. Loss, Analysis (2nd version). Graduate Studies in Mathematics, Vol 14. American Mathematical Society (2001). [Google Scholar]
  32. N. Mandell, A. Hakim, G. Hamett and M. Francisquez, Electromagnetic full-f gyrokinetics in the tokamak edge with discontinuous galerkin methods. J. Plasma Phys. 86 (2020) 905860109. [CrossRef] [Google Scholar]
  33. G. Manfredi and D. Coulette, Kinetic simulations of the Chodura and Debye sheaths for magnetic fields with grazing incidence. Plasma Phys. Control. Fusion 58 (2016) 025008. [CrossRef] [Google Scholar]
  34. E. Miot, The gyrokinetic limit for the Vlasov-Poisson system with a point charge. Nonlinearity 32 (2019) 654–677. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Moritz, E. Faudot, S. Devaux and S. Heuraux, Plasma sheath properties in a magnetic field parallel to the wall. Phys. Plasmas (2016). [Google Scholar]
  36. P.J. Morrison, The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80 (1980) 383–386. [CrossRef] [MathSciNet] [Google Scholar]
  37. F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of mathematical functions. Cambridge University Press (2010). [Google Scholar]
  38. F. Poupaud, Boundary value problems for the stationary Vlasov-Maxwell system. Forum Math. 4 (1992) 499–527. [CrossRef] [MathSciNet] [Google Scholar]
  39. P.A. Raviart and C. Greengard, A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode. Commun. Pure Appl. Math. 43 (1990) 473–507. [CrossRef] [Google Scholar]
  40. K.U. Riemann, The Bohm criterion and sheath formation. J. Phys. D: Appl. Phys. 24 (1991) 493. [CrossRef] [Google Scholar]
  41. J. Schaeffer, Global existence of smooth solutions to the Vlasov Poisson system in three dimensions. Commun. Partial Diff. Equ. 16 (2009) 1313–1335. [Google Scholar]
  42. E. Shi, A. Hakim and G.W. Hammet, A gyrokinetic 1D scrape-off layer model of an elm heat pulse. Phys. Plasmas 22 (2015) 022504. [CrossRef] [Google Scholar]
  43. L. St-Raymond, Control of large velocities in the two-dimensional gyrokinetic approximation. J. Math. Pure. Appl. 81 (2002) 379–399. [CrossRef] [Google Scholar]
  44. P. Stangeby, The plasma boundary of magnetic fusion devices. Institute of Physics Publishing (2000). [CrossRef] [Google Scholar]
  45. P. Stangeby, The Chodura sheath for angles of a few degrees between the magnetic field and the surface of divertor targets and limiters. Nucl. Fusion 52 (2012) 083012. [CrossRef] [Google Scholar]
  46. A. Weinstein and P.J. Morrison, Comments on the Maxwell-Vlasov equations as a continuous Hamiltonian System. Phys. Lett. A 86 (1981) 383–386. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you