Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 3017 - 3042
DOI https://doi.org/10.1051/m2an/2021078
Published online 17 December 2021
  1. D.N.D.G. Allen and R.V. Southwell, Relaxation methods applied to determine the motion in two dimensions of a viscous fluid past a fixed cylinder. Q. J. Mech. Appl. Math. 8 (1955) 129–145. [CrossRef] [Google Scholar]
  2. R. Bank, W. Coughran and L.C. Cowsar, The finite volume scharfetter-gummel method for steady convection diffusion equations. Comput. Visulaization Sci. 1 (1998) 123–136. [CrossRef] [Google Scholar]
  3. R.P. Brent, An algorithm with guaranteed convergence for finding a zero of a function. Comput. J. 14 (1971) 422–425. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Brezzi, L.D. Marini and P. Pietra, Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75 (1989) 493–514. [CrossRef] [Google Scholar]
  5. C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85 (2016) 549–580. [Google Scholar]
  6. C. Cancès and C. Guichard, Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17 (2017) 1525–1584. [Google Scholar]
  7. C. Chainais-Hillairet and J. Droniou, Finite-volume schemes for noncoercive elliptic problems with neumann boundary conditions. IMA J. Numer. Anal. 31 (2011) 61–85. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Chainais-Hillairet and M. Herda, Large-time behaviour of a family of finite volume schemes for boundary-driven convection–diffusion equations. IMA J. Numer. Anal. 40 (2020) 2473–2504. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.S. Chang and G. Cooper, A practical difference scheme for fokker-planck equations. J. Comput. Phys. 6 (1970) 1–16. [CrossRef] [Google Scholar]
  10. S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker–Planck equations for a free energy functional or Markov process on a graph. 203 (2012) 969–1008. [Google Scholar]
  11. D.A. Di Pietro and J. Droniou, A third strang lemma and an Aubin-Nitsche trick for schemes in fully discrete formulation. Calcolo 55 (2018) 40. [CrossRef] [Google Scholar]
  12. K. Disser and M. Liero, On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks Heterg. Media 10 (2015) 233–253. [CrossRef] [Google Scholar]
  13. P.D. Dixit, A. Jain, G. Stock and K.A. Dill, Inferring transition rates of networks from populations in continuous-time markov processes. J. Chem. Theory Comput. 11 (2015) 5464–5472. [CrossRef] [PubMed] [Google Scholar]
  14. L. Donati, M. Weber and B.G. Keller, Markov models from the square root approximation of the Fokker-Planck equation: calculating the grid-dependent flux. J. Phys. Condensed Matter 33 (2021) 115902. [CrossRef] [PubMed] [Google Scholar]
  15. P. Dondl, T. Frenzel and A. Mielke, A gradient system with a wiggly energy and relaxed EDP-convergence. ESAIM Control Optim. Calc. Var. 25 (2019) 68. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ratio. Mech. Anal. 206 (2012) 997–1038. [CrossRef] [Google Scholar]
  17. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. [Google Scholar]
  18. R. Eymard, J. Fuhrmann and K. Gärtner, A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems. Numer. Math. 102 (2006) 463–495. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Fackeldey, P. Koltai, P. Névir, H. Rust, A. Schild and M. Weber, From metastable to coherent setstime-discretization schemes. Chaos Interdisciplinary J. Nonlinear Sci. 29 (2019) 012101. [CrossRef] [PubMed] [Google Scholar]
  20. P. Farrell, T. Koprucki and J. Fuhrmann, Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics. J. Comput. Phys. 346 (2017) 497–513. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Farrell, N. Rotundo, D.H. Doan, M. Kantner, J. Fuhrmann and T. Koprucki, Drift-Diffusion Models. In: Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Methods, edited by J. Piprek. Vol. 2, Chapter 50 CRC Press, Taylor & Francis Group, Boca Raton (2017) 731–771. [Google Scholar]
  22. D. Forkert, J. Maas and L. Portinale, Evolutionary γ-convergence of entropic gradient flow structures for fokker-planck equations in multiple dimensions. Preprint arXiv:2008.10962 (2020). [Google Scholar]
  23. T. Frenzel and M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discr. Cont. Dyn. Syst.-S. 14 (2021) 395. [Google Scholar]
  24. T. Gallouët, R. Herbin and M.H. Vignal, Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1935–1972. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Gladbach, E. Kopfer, J. Maas and L. Portinale, Homogenisation of one-dimensional discrete optimal transport. J. Math. Pures App. 139 (2020) 204–234. [CrossRef] [Google Scholar]
  26. M. Heida, Convergences of the squareroot approximation scheme to the Fokker-Planck operator. Math. Models Methods Appl. Sci. 28 (2018) 2599–2635. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Heida, Stochastic homogenization on randomly perforated domains. Preprint arXiv:2001.10373 (2020). [Google Scholar]
  28. M. Heida, J. Màlek and K.R. Rajagopal, On the development and generalizations of Allen-Cahn and Stefan equations within a thermodynmic framework. Z. Angew. Math. Phys. (ZAMP) 63 (2012) 759–776. [CrossRef] [MathSciNet] [Google Scholar]
  29. A.M. Il’in, Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. Notes Acad. Sci. USSR 6 (1969) 237–248. Translated from Mat. Zametki 6 (1969) 237–248. [Google Scholar]
  30. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [Google Scholar]
  31. M. Kantner, Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient. J. Comput. Phys. 402 (2020) 109091. [CrossRef] [MathSciNet] [Google Scholar]
  32. R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31–55. [Google Scholar]
  33. H.C. Lie, K. Fackeldey and M. Weber, A square root approximation of transition rates for a markov state model. SIAM J. Matrix Anal. App. 34 (2013) 738–756. [CrossRef] [Google Scholar]
  34. M. Liero, A. Mielke, M.A. Peletier and D.R. Michiel Renger, On microscopic origins of generalized gradient structures. Discr. Cont. Dynam. Syst. Ser. S 10 (2017) 1–35. [Google Scholar]
  35. L. Lu and J.-G. Liu, Large time behaviors of upwind schemes and b-schemes for Fokker-Planck equations on ℝ by jump processes. Math. Comput. 89 (2020) 2283–2320. [CrossRef] [Google Scholar]
  36. J. Maas, Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250–2292. [Google Scholar]
  37. R. Marcelin, Contribution a l’étude de la cinétique physico-chimique. Ann. Phys. III (1915) 120–231. [CrossRef] [EDP Sciences] [Google Scholar]
  38. P.A. Markowich, The Stationary Semiconductor Device Equations. Springer, Vienna (1986). [CrossRef] [Google Scholar]
  39. A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329–1346. [Google Scholar]
  40. A. Mielke, Geodesic convexity of the relative entropy in reversible markov chains. Calc. Var. Part. Differ. Equ. 48 (2013) 1–31. [CrossRef] [Google Scholar]
  41. A. Mielke, On evolutionary Γ-convergence for gradient systems (Ch. 3). In: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, edited by A. Muntean, J. Rademacher and A. Zagaris. Proc. of Summer School in Twente University, June 2012. Vol. 3 of Lecture Notes in Applied Math. Mechanics Springer (2016) 187–249. [CrossRef] [Google Scholar]
  42. A. Mielke and A. Stephan, Coarse-graining via EDP-convergence for linear fast-slow reaction systems. Math. Models Methods Appl. Sci. 30 (2020) 1765–1807. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Mielke, M.A. Peletier and D.R. Michiel Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41 (2014) 1293–1327. [CrossRef] [MathSciNet] [Google Scholar]
  44. A. Mielke, R.I.A. Patterson, M.A. Peletier and D.R. Michiel Renger, Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics. SIAM J. Appl. Math. 77 (2017) 1562–1585. [CrossRef] [MathSciNet] [Google Scholar]
  45. J.J.H. Miller and S. Wang, An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. ESAIM: M2AN 28 (1994) 123–140. [CrossRef] [EDP Sciences] [Google Scholar]
  46. M.A. Peletier, R. Rossi, G. Savaré and O. Tse, Jump processes as generalized gradient flows. Preprint arXiv:2006.10624 (2020). [Google Scholar]
  47. D.L. Scharfetter and H.K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Devices 16 (1969) 64–77. [CrossRef] [Google Scholar]
  48. K.B. Stolarsky, Generalizations of the logarithmic mean. Math. Mag. 48 (1975) 87–92. [CrossRef] [MathSciNet] [Google Scholar]
  49. W.W. van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29 (1950) 560–607. [CrossRef] [Google Scholar]
  50. P.S. Vassilevski, S.I. Petrova and R.D. Lazarov, Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Stat. Comput. 13 (1992) 1287–1313. [CrossRef] [Google Scholar]
  51. M. Weber and N. Ernst, A fuzzy-set theoretical framework for computing exit rates of rare events in potential-driven diffusion processes. Preprint arXiv:1708.00679 (2017). [Google Scholar]
  52. Wolfram Mathematica, Version 11.1. Wolfram Research. Inc., Champagne, IL, USA (2017). [Google Scholar]
  53. J. Xu and L. Zikatanov, A monotone finite element scheme for converction-diffusion equations. Math. Comput. 68 (1999) 1429–1446. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you