Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 2981 - 3016
DOI https://doi.org/10.1051/m2an/2021075
Published online 06 December 2021
  1. V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Vol. 35 of Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2008). [CrossRef] [Google Scholar]
  2. M. Aganagić, Newton’s method for linear complementarity problems. Math. Program. 28 (1984) 349–362. [CrossRef] [Google Scholar]
  3. L. Asselineau, G. Bogdanic and J. Vidal, A versatile algorithm for calculating vapour-liquid equilibria. Fluid Phase Equilib. 3 (1979) 273–290. [CrossRef] [Google Scholar]
  4. L. Beaude, K. Brenner, S. Lopez, R. Masson and F. Smai, Non-isothermal compositional liquid gas Darcy flow: formulation, soil-atmosphere boundary condition and application to high-energy geothermal simulations. Comput. Geosci. 23 (2019) 443–470. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Ben Gharbia, Résolution de problèmes de complémentarité: Application à un écoulement diphasique dans un milieu poreux. Ph.D. thesis Université Paris Dauphine (Paris IX) (December 2012) http://tel.archives-ouvertes.fr/tel-00776617. [Google Scholar]
  6. I. Ben Gharbia and É. Flauraud, Study of compositional multiphase flow formulation using complementarity conditions. Oil Gas Sci. Technol. 74 (2019) 43. [CrossRef] [Google Scholar]
  7. I. Ben Gharbia and J. Jaffré, Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. 99 (2014) 28–36. [CrossRef] [Google Scholar]
  8. I. Ben Gharbia, É. Flauraud and A. Michel, Study of compositional multi-phase flow formulations with cubic EOS. In: Vol. 2 of SPE Reservoir Simulation Symposium, 23–25 February, Houston, Texas, USA (2015) 1015–1025. [Google Scholar]
  9. S. Boyd and L. Vandenberghe, Convex Optimization. Berichte über verteilte messysteme. Cambridge University Press, Cambridge, UK (2004). [Google Scholar]
  10. K.H. Coats, An equation of state compositional model. SPE J. 20 (1980) 363–376. [Google Scholar]
  11. L. Contento, A. Ern and R. Vermiglio, A linear-time approximate convex envelope algorithm using the double Legendre-Fenchel transform with application to phase separation. Comput. Optim. Appl. 60 (2015) 231–261. [CrossRef] [MathSciNet] [Google Scholar]
  12. U.K. Deiters and T. Kraska, High-pressure Fluid Phase Equilibria: Phenomenology and Computation. Vol. 2 ofSupercritical Fluid Science and Technology. Elsevier, Amsterdam (2012). http://store.elsevier.com/High-Pressure-Fluid-Phase-Equilibria/isbn-9780444563545/. [Google Scholar]
  13. R.A. Heidemann, Computation of high pressure phase equilibria. Fluid Phase Equilib. 14 (1983) 55–78. [CrossRef] [Google Scholar]
  14. W. Henry and J. Banks III, Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil. Trans. R. Soc. London 93 (1803) 29–274. [CrossRef] [Google Scholar]
  15. S. Kräutle, The semismooth Newton method for multicomponent reactive transport with minerals. Adv. Water Res. 34 (2011) 137–151. [CrossRef] [Google Scholar]
  16. T.C. Lai Nguyen, Analysis of a nonlinear algebraic system arising in phase equilibria problems. Master’s thesis, INSA Rennes (2018). [Google Scholar]
  17. A. Lauser, C. Hager, R. Helmig and B. Wohlmuth, A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Res. 34 (2011) 957–966. [CrossRef] [Google Scholar]
  18. S. Le Vent, A summary of the properties of van der Waals fluids. Int. J. Mech. Engrg Edu. 29 (2001) 257–277. [CrossRef] [Google Scholar]
  19. I. Lusetti, Numerical methods for compositional multiphase flow models with cubic EOS. Tech. report. IFPEN (2016). [Google Scholar]
  20. R. Masson, L. Trenty and Y. Zhang, Formulations of two phase liquid gas compositional Darcy flows with phase transitions. Int. J. Finite 11 (2014) 1–34. [Google Scholar]
  21. R. Masson, L. Trenty and Y. Zhang, Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface. J. Comput. Phys. 321 (2016) 708–728. [Google Scholar]
  22. M.L. Michelsen, The isothermal flash problem. Part I. Stability. Fluid Phase Equilib. 9 (1982) 1–19. [Google Scholar]
  23. M.L. Michelsen, The isothermal flash problem. Part II. Phase-split calculation. Fluid Phase Equilib. 9 (1982) 21–40. [CrossRef] [Google Scholar]
  24. M.L. Michelsen and J.M. Mollerup, Thermodynamic Models: Fundamentals & Computational Aspects. Tie-Line Publications, Holte (2007). [Google Scholar]
  25. A. Mitsos and P.I. Barton, A dual extremum principle in thermodynamics. AIChE J. 53 (2007) 2131–2147. [CrossRef] [Google Scholar]
  26. J. Nocedal and S.J. Wright, Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). [Google Scholar]
  27. H. Orbey and S.I. Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules. Cambridge Series in Chemical Engineering. Cambridge University Press (1998). [Google Scholar]
  28. D.-Y. Peng and D.B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15 (1976) 59–64. [Google Scholar]
  29. R.H. Perry and D.W. Green, Perry’s Chemical Engineers’ Handbook. McGraw-Hill Chemical Engineering Series. McGraw-Hill (1999). [Google Scholar]
  30. N. Peton, Comparaison de plusieurs formulations pour les écoulements multiphasiques et compositionnels en milieu poreux. Tech. report. IFPEN (2015). [Google Scholar]
  31. N. Peton, C. Cancès, D. Granjeon, Q.-H. Tran and S. Wolf, Numerical scheme for a water flow-driven forward stratigraphic model. Comput. Geosci. 24 (2020) 37–60. [CrossRef] [MathSciNet] [Google Scholar]
  32. H.H. Rachford and J.D. Rice, Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium. J. Petrol. Technol. 4 (1952) 19. [CrossRef] [Google Scholar]
  33. J. Vidal, Thermodynamics. Applications in Chemical Engineering and The Petroleum Industry. Institut Français du Pétrole Publications, Technip, Paris (2003). [Google Scholar]
  34. D.T.S. Vu, Numerical resolution of algebraic systems with complementarity conditions: application to the thermodynamics of compositional multiphase mixtures. Ph.D. thesis. Université Paris-Saclay (2020). https://tel.archives-ouvertes.fr/tel-02987892. [Google Scholar]
  35. D.T.S. Vu, I. Ben Gharbia, M. Haddou and Q.H. Tran, A new approach for solving nonlinear algebraic systems with complementarity conditions: application to compositional multiphase equilibrium problems. Math. Comput. Simul. 190 (2021) 1243–1274. [CrossRef] [Google Scholar]
  36. C.H. Whitson and M.L. Michelsen, The negative flash. Fluid Phase Equilib. 53 (1989) 51–71. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you