Open Access
Volume 55, Number 6, November-December 2021
Page(s) 2827 - 2847
Published online 25 November 2021
  1. G. Alléon, B. Carpentieri, I.S. Duff, L. Giraud, E. Martin and G. Sylvand, Efficient parallel iterative solvers for the solution of large dense linear systems arising from the boundary element method in electromagnetism. In: Proceedings of the International Conference on Supercomputing in Nuclear Application (SNA), Paris (2003). [Google Scholar]
  2. A.B. Bakushinskii, The problem of the convergence of the iteratively regularized Gauss-Newton method. Comput. Math. Math. Phys. 32 (1992) 1353–1359. [MathSciNet] [Google Scholar]
  3. A.B. Bakushinskii, Iterative methods for solving nonlinear operator equations without regularity. A new approach. Doklady Akademii Nauk 330 (1993) 282–284. [Google Scholar]
  4. A. Bakushinsky and A. Smirnova, On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems. Numer. Funct. Anal. Optim. 26 (2005) 35–48. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.M. Bardsley, MCMC-based image reconstruction with uncertainty quantification. SIAM J. Sci. Comput. 34 (2012) A1316–A1332. [CrossRef] [Google Scholar]
  6. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM (1994). [CrossRef] [Google Scholar]
  7. R.H. Bayford, Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 8 (2006) 63–91. [CrossRef] [PubMed] [Google Scholar]
  8. A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18 (2009) 2419–2434. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. M. Benzi, Preconditioning techniques for large linear systems: A survey. J. Comput. Phys. 182 (2002) 418–477. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Blaschke, A. Neubauer and O. Scherzer, On convergence rates for the iteratively regularized Gauss-Newton method. IMA J. Numer. Anal. 17 (1997) 421–436. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.C.R. Bloch and S. Heybrock, A nested Krylov subspace method for the overlap operator. Preprint arXiv:0910.2918 (2009). [Google Scholar]
  12. L. Borcea, Electrical impedance tomography. Inverse Prob. 18 (2002) R99. [CrossRef] [Google Scholar]
  13. A. Borsic, C. Comina, S. Foti, R. Lancellotta and G. Musso, Imaging heterogeneities with electrical impedance tomography: laboratory results. Géotechnique 55 (2005) 539–547. [CrossRef] [Google Scholar]
  14. A.M. Bruaset, A Survey of Preconditioned Iterative Methods. CRC Press 328 (1995). [Google Scholar]
  15. A. Buccini, M. Pasha and L. Reichel, Modulus-based iterative methods for constrained lp-lq minimization. Inverse Prob. 36 (2020) 084001. [CrossRef] [Google Scholar]
  16. A. Buccini, M. Pasha and L. Reichel, Generalized singular value decomposition with iterated Tikhonov regularization. J. Comput. Appl. Math. 373 (2020) 112276. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Buccini, M. Pasha and L. Reichel, Linearized Krylov subspace Bregman iteration with nonnegativity constraint. Numer. Algorithms 87 (2021) 1177–1200. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Chen, Matrix Preconditioning Techniques and Applications. Cambridge University Press 19 (2005). [CrossRef] [Google Scholar]
  19. M. Cheney, D. Isaacson and J.C. Newell, Electrical impedance tomography. SIAM Rev. 41 (1999) 85–101. [CrossRef] [MathSciNet] [Google Scholar]
  20. K.-S. Cheng, D. Isaacson, J.C. Newell and D.G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36 (1989) 918–924. [CrossRef] [Google Scholar]
  21. J. Chung and S. Gazzola, Flexible Krylov methods for lp regularization. SIAM J. Sci. Comput. 41 (2019) S149–S171. [CrossRef] [Google Scholar]
  22. J. Chung and S. Gazzola, Computational methods for large-scale inverse problems: A survey on hybrid projection methods. Preprint arXiv:2105.07221 (2021). [Google Scholar]
  23. C. Comina, R.M. Cosentini, G. Della Vecchia, S. Foti and G. Musso, 3D-electrical resistivity tomography monitoring of salt transport in homogeneous and layered soil samples. Acta Geotech. 6 (2011) 195–203. [CrossRef] [Google Scholar]
  24. R.M. Cosentini, G. Della Vecchia, S. Foti and G. Musso, Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography. Géotechnique 62 (2012) 583–594. [CrossRef] [Google Scholar]
  25. W. Daily, A. Ramirez, D. LaBrecque and J. Nitao, Electrical resistivity tomography of vadose water movement. Water Res. Res. 28 (1992) 1429–1442. [CrossRef] [Google Scholar]
  26. E. De Sturler, Truncation strategies for optimal Krylov subspace methods. SIAM J. Numer. Anal. 36 (1999) 864–889. [CrossRef] [MathSciNet] [Google Scholar]
  27. V. Dolean and S. Lanteri, Parallel multigrid methods for the calculation of unsteady flows on unstructured grids: algorithmic aspects and parallel performances on clusters of PCS. Parallel Comput. 30 (2004) 503–525. [CrossRef] [MathSciNet] [Google Scholar]
  28. D.L. Donoho, Denoising by soft-thresholding. IEEE Trans. Inf. Theory 41 (1995) 613–627. [CrossRef] [Google Scholar]
  29. J. Drkošová, A. Greenbaum, M. Rozložnk and Z. Strakoš, Numerical stability of GMRES. BIT Numer. Math. 35 (1995) 309–330. [CrossRef] [Google Scholar]
  30. H.C. Elman, O.G. Ernst and D.P O’leary, A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput. 23 (2001) 1291–1315. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Gazzola and J.G. Nagy, Generalized Arnoldi-Tikhonov method for sparse reconstruction. SIAM J. Sci. Comput. 36 (2014) B225–B247. [CrossRef] [Google Scholar]
  32. S. Gazzola, J.G. Nagy and M. Sabaté Landman, Iteratively reweighted FGMRES and FLSQR for sparse reconstruction. SIAM J. Sci. Comput. (2021) S47–S69. [CrossRef] [Google Scholar]
  33. A. Ghai, C. Lu and X. Jiao, A comparison of preconditioned Krylov subspace methods for large-scale nonsymmetric linear systems. Numer. Linear Algebra App. 26 (2019) e2215. [CrossRef] [Google Scholar]
  34. T. Goldstein and S. Osher, The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2 (2009) 323–343. [CrossRef] [MathSciNet] [Google Scholar]
  35. G.H. Golub and C.F. Van Loan, Matrix Computations. Johns Hopkins University Press (1989). [Google Scholar]
  36. G.H. Golub and C.F. Van Loan, Matrix Computations, 4th edition. Johns Hopkins University Press, Baltimore (2013). [Google Scholar]
  37. G.H. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J. Sci. Comput. 21 (1999) 1305–1320. [Google Scholar]
  38. G.H. Golub and Q. Ye, Inexact inverse iteration for generalized eigenvalue problems. BIT Numer. Math. 40 (2000) 671–684. [CrossRef] [Google Scholar]
  39. M. Hanke and M. Brühl, Recent progress in electrical impedance tomography. Inverse Prob. 19 (2003) S65. [CrossRef] [Google Scholar]
  40. P.C. Hansen, Discrete Inverse Problems: Insight and Algorithms. SIAM (2010). [CrossRef] [Google Scholar]
  41. I. Hnĕtynková, M. Plešinger and Z. Strakoš, The regularizing effect of the Golub-Kahan iterative bidiagonalization and revealing the noise level in the data. BIT Numer. Math. 49 (2009) 669–696. [CrossRef] [Google Scholar]
  42. T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem. Inverse Prob. 13 (1997) 1279–1299. [CrossRef] [Google Scholar]
  43. G. Huang, A. Lanza, S. Morigi, L. Reichel and F. Sgallari, Majorization-minimization generalized Krylov subspace methods for lp-lq optimization applied to image restoration. BIT Numer. Math. 57 (2017) 351–378. [CrossRef] [Google Scholar]
  44. I.C.F. Ipsen, A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23 (2001) 1050–1051. [CrossRef] [MathSciNet] [Google Scholar]
  45. D. Isaacson, J.L. Mueller, J.C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imaging 23 (2004) 821–828. [CrossRef] [PubMed] [Google Scholar]
  46. O. Isaksen, A.S. Dico and E.A. Hammer, A capacitance-based tomography system for interface measurement in separation vessels. Meas. Sci. Technol. 5 (1994) 1262. [CrossRef] [Google Scholar]
  47. B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM: Control Optim. Calculus Variations 18 (2012) 1027–1048. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  48. B. Jin and P. Maass, Sparsity regularization for parameter identification problems. Inverse Prob. 28 (2012) 123001. [CrossRef] [Google Scholar]
  49. B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Int. J. Numer. Methods Eng. 89 (2012) 337–353. [CrossRef] [Google Scholar]
  50. J.P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Prob. 16 (2000) 1487–1522. [CrossRef] [Google Scholar]
  51. J.P. Kaipio, A. Seppänen, E. Somersalo and H. Haario, Posterior covariance related optimal current patterns in electrical impedance tomography. Inverse Prob. 20 (2004) 919. [CrossRef] [Google Scholar]
  52. A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems. Oxford University Press 36 (2008). [Google Scholar]
  53. A. Lanza, S. Morigi, L. Reichel and F. Sgallari, A generalized Krylov subspace method for lp-lq minimization. SIAM J. Sci. Comput. 37 (2015) S30–S50. [CrossRef] [Google Scholar]
  54. A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: A numerical study. Inverse Prob. 22 (2006) 1967. [CrossRef] [Google Scholar]
  55. B. Lewis and L. Reichel, Arnoldi-Tikhonov regularization methods. J. Comput. Appl. Math. 226 (2009) 92–102. [CrossRef] [MathSciNet] [Google Scholar]
  56. J. Liesen, M. Rozloznk and Z. Strakos, Least squares residuals and minimal residual methods. SIAM J. Sci. Comput. 23 (2002) 1503–1525. [CrossRef] [MathSciNet] [Google Scholar]
  57. A. Nissinen, L.M. Heikkinen and J.P. Kaipio, The Bayesian approximation error approach for electrical impedance tomography-experimental results. Meas. Sci. Technol. 19 (2007) 015501. [Google Scholar]
  58. A. Nissinen, L.M. Heikkinen, V. Kolehmainen and J.P. Kaipio, Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 20 (2009) 105504. [CrossRef] [Google Scholar]
  59. J. Nocedal and S.J. Wright, Numerical Optimization. Springer (2006). [Google Scholar]
  60. Y. Notay, Flexible conjugate gradients. SIAM J. Sci. Comput. 22 (2000) 1444–1460. [CrossRef] [MathSciNet] [Google Scholar]
  61. C.C. Paige, M. Rozloznk and Z. Strakos, Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. App. 28 (2006) 264–284. [CrossRef] [Google Scholar]
  62. R.P. Patterson, Electrical impedance tomography: methods, history, and applications (institute of physics medical physics series). Phys. Med. Biol. 50 (2005) 2427. [CrossRef] [Google Scholar]
  63. P. Rodrguez and B. Wohlberg, An efficient algorithm for sparse representations with lp data fidelity term. In: Proceedings of 4th IEEE Andean Technical Conference (ANDESCON) (2008). [Google Scholar]
  64. Y. Saad, A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14 (1993) 461–469. [CrossRef] [MathSciNet] [Google Scholar]
  65. Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM (2003). [Google Scholar]
  66. Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. [CrossRef] [Google Scholar]
  67. V. Simoncini and D.B. Szyld, Flexible inner-outer Krylov subspace methods. SIAM J. Numer. Anal. 40 (2002) 2219–2239. [CrossRef] [MathSciNet] [Google Scholar]
  68. V. Simoncini and D.B. Szyld, Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra App. 14 (2007) 1–59. [CrossRef] [Google Scholar]
  69. G.L.G. Sleijpen, H.A. Van der Vorst and J. Modersitzki, Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. App. 22 (2001) 726–751. [CrossRef] [Google Scholar]
  70. A. Smirnova, R.A. Renaut and T. Khan, Convergence and application of a modified iteratively regularized Gauss-Newton algorithm. Inverse Prob. 23 (2007) 1547–1563. [CrossRef] [Google Scholar]
  71. E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52 (1992) 1023–1040. [CrossRef] [MathSciNet] [Google Scholar]
  72. D.B. Szyld and J.A. Vogel, FQMR: A flexible quasi-minimal residual method with inexact preconditioning. SIAM J. Sci. Comput. 23 (2001) 363–380. [CrossRef] [MathSciNet] [Google Scholar]
  73. L. Tenorio, An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems. SIAM (2017). [Google Scholar]
  74. J. Van Den Eshof and G.L.G. Sleijpen, Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Anal. App. 26 (2004) 125–153. [CrossRef] [Google Scholar]
  75. H.A. Van der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods. Numer. Linear Algebra App. 1 (1994) 369–386. [CrossRef] [Google Scholar]
  76. C.F. Van Loan and G.H. Golub, Matrix Computations, Johns Hopkins University Press Baltimore (1983). [Google Scholar]
  77. P.J. Vauhkonen, M. Vauhkonen, A. Seppänen and J.P. Kaipio, Iterative image reconstruction in three-dimensional electrical impedance tomography. Inverse Prob. Design Optim. 1 (2004) 152. [Google Scholar]
  78. J.A. Vogel, Flexible BICG and flexible BI-CGSTAB for nonsymmetric linear systems. Appl. Math. Comput. 188 (2007) 226–233. [MathSciNet] [Google Scholar]
  79. C. Vuik, New insights in GMRES-like methods with variable preconditioners. J. Comput. Appl. Math. 61 (1995) 189–204. [CrossRef] [MathSciNet] [Google Scholar]
  80. C. Vuik and H.A. van der Vorst, A comparison of some GMRES-like methods. Linear Algebra App. 160 (1992) 131–162. [CrossRef] [Google Scholar]
  81. K. Wang and M.A. Anastasio, Photoacoustic and thermoacoustic tomography: image formation principles. In: Handbook of Mathematical Methods in Imaging (2015). [Google Scholar]
  82. J.S. Warsa, M. Benzi, T.A. Wareing and J.E. Morel, Preconditioning a mixed discontinuous finite element method for radiation diffusion. Numer. Linear Algebra App. 11 (2004) 795–811. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you