Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 2849 - 2897
DOI https://doi.org/10.1051/m2an/2021063
Published online 25 November 2021
  1. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Ambartsumyan, V.J. Ervin, T. Nguyen and I. Yotov, A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM: M2AN 53 (2019) 1915–1955. [CrossRef] [EDP Sciences] [Google Scholar]
  3. J.-L. Auriault and E. Sanchez-Palencia, Etude de comportment macroscopique d’un milieu poreux sature deformable. J. de Méc. 16 (1977) 575–603. [Google Scholar]
  4. M. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. [Google Scholar]
  5. L. Bociu, G. Guidoboni, R. Sacco and J.T. Webster, Analysis of nonlinear poro-elastic and poro-visco-elastic models. Arch. Ration. Mech. Anal. 222 (2016) 1445–1519. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer (2013). [Google Scholar]
  7. F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media. Comput. Math. App. 98 (2021) 40–68. [Google Scholar]
  8. J.W. Both, K. Kumar, J.M. Nordbotten and F.A. Radu, Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. App. 77 (2019) 1479–1502. [Google Scholar]
  9. J.W. Both, K. Kumar, J.M. Nordbotten, F.A. Radu, The gradient flow structures of thermo-poro-visco-elastic processes in porous media. Preprint: arXiv:1907.03134 (2019). [Google Scholar]
  10. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media (2010). [Google Scholar]
  11. M.K. Brun, E. Ahmed, J.M. Nordbotten and F.A. Radu, Well-posedness of the fully coupled quasi-static thermo-poroelastic equations with nonlinear convective transport. J. Math. Anal. App. 471 (2019) 239–266. [CrossRef] [Google Scholar]
  12. Q.M. Bui, D. Osei-Kuffuor, N. Castelletto and J.A. White, A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media. SIAM J. Sci. Comput. 42 (2020) B379–B396. [CrossRef] [Google Scholar]
  13. J.T. Camargo, J.A. White and R.I. Borja, A macroelement stabilization for multiphase poromechanics. Comput. Geosci. 25 (2021) 775–792. [CrossRef] [MathSciNet] [Google Scholar]
  14. P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2013). [Google Scholar]
  15. D.S. Clark, Short proof of a discrete Gronwall inequality. Discrete Appl. Math. 16 (1987) 279–281. [Google Scholar]
  16. O. Coussy, Poromechanics. Wiley (2004). [Google Scholar]
  17. R. de Boer, Theory of Porous Media: Highlights in Historical Development and Current State. Springer Science & Business Media (2000). [CrossRef] [Google Scholar]
  18. L. Evans, Partial Differential Equations: Graduate Studies in Mathematics. American Mathematical Society (2010). [Google Scholar]
  19. R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numer. Math. 82 (1999) 91–116. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. [Google Scholar]
  21. R. Eymard, R. Herbin and A. Michel, Mathematical study of a petroleum-engineering scheme. ESAIM: M2AN 37 (2003) 937–972. [Google Scholar]
  22. F. Gaspar, J. Gracia, F. Lisbona and P. Vabishchevich, A stabilized method for a secondary consolidation Biot’s model. Numer. Methods Part. Differ. Equ. 24 (2008) 60–78. [CrossRef] [Google Scholar]
  23. R. Lewis and B. Schrefler, The finite element method in the static and dynamic deformation and consolidation of porous media. In: Numerical Methods in Engineering. John Wiley (1998). [Google Scholar]
  24. A. Mikelić and M.F. Wheeler, Theory of the dynamic Biot-Allard equations and their link to the quasi-static Biot system. J. Math. Phys. 53 (2012) 123702. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Mikelić and M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17 (2013) 455–461. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Mikelić, M.F. Wheeler and T. Wick, Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19 (2015) 1171–1195. [CrossRef] [MathSciNet] [Google Scholar]
  27. Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Res. Res. 12 (1976) 513–522. [CrossRef] [Google Scholar]
  28. M.A. Murad and J.H. Cushman, Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34 (1996) 313–338. [CrossRef] [Google Scholar]
  29. R.H. Nochetto and C. Verdi, Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784–814. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.M. Nordbotten and M.A. Celia, Geological Storage of CO2: Modeling Approaches for Large-scale Simulation. John Wiley & Sons (2011). [Google Scholar]
  31. I.S. Pop and B. Schweizer, Regularization schemes for degenerate Richards equations and outflow conditions. Math. Models Methods Appl. Sci. 21 (2011) 1685–1712. [CrossRef] [MathSciNet] [Google Scholar]
  32. C. Rodrigo, X. Hu, P. Ohm, J.H. Adler, F.J. Gaspar and L.T. Zikatanov, New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput. Methods Appl. Mech. Eng. 341 (2018) 467–484. [CrossRef] [Google Scholar]
  33. M.E. Rose, Numerical methods for flows through porous media. I. Math. Comp. 40 (1983) 435–467. [Google Scholar]
  34. B. Saad and M. Saad, Study of fully implicit petroleum engineering finite-volume scheme for compressible two-phase flow in porous media. SIAM J. Numer. Anal. 51 (2013) 716–741. [CrossRef] [MathSciNet] [Google Scholar]
  35. R. Showalter, Diffusion in poro-elastic media. J. Math. Anal. App. 251 (2000) 310–340. [CrossRef] [Google Scholar]
  36. R.E. Showalter, Poroelastic filtration coupled to Stokes flow. Lecture Notes Pure Appl. Math. 242 (2005) 229. [CrossRef] [Google Scholar]
  37. R. Showalter and N. Su, Partially saturated flow in a poroelastic medium. Discrete Continuous Dyn. Syst. Ser. B 1 (2001) 403–420. [CrossRef] [MathSciNet] [Google Scholar]
  38. J. Simon, Compact sets in the space Lp (0, T; B). Ann. Mat. Pura App. 146 (1986) 65–96. [CrossRef] [Google Scholar]
  39. A. Szymkiewicz, Modelling Water Flow in Unsaturated Porous Media: Accounting for Nonlinear Permeability and Material Heterogeneity. Springer Science & Business Media (2012). [Google Scholar]
  40. A. Tavakoli and M. Ferronato, On existence-uniqueness of the solution in a nonlinear Biot’s model. Appl. Math 7 (2013) 333–341. [Google Scholar]
  41. K.V. Terzaghi, The shearing resistance of saturated soils and the angle between the planes of shear. In: First International Conference on Soil Mechanics 1 (1936) 54–59. [Google Scholar]
  42. C.J. van Duijn and A. Mikelić, Mathematical Theory of Nonlinear Single-Phase Poroelasticity. https://hal-univ-lyon1.archives-ouvertes.fr/hal-02144933 (2019). [Google Scholar]
  43. C. van Duijn, A. Mikelić, M.F. Wheeler and T. Wick, Thermoporoelasticity via homogenization: modeling and formal two-scale expansions. Int. J. Eng. Sci. 138 (2019) 1–25. [CrossRef] [Google Scholar]
  44. M. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (1980) 892–898. [CrossRef] [Google Scholar]
  45. M. Wheeler, G. Xue and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18 (2014) 57–75. [Google Scholar]
  46. J.A. White, N. Castelletto, S. Klevtsov, Q.M. Bui, D. Osei-Kuffuor and H.A. Tchelepi, A two-stage preconditioner for multiphase poromechanics in reservoir simulation. Comput. Methods Appl. Mech. Eng. 357 (2019). [Google Scholar]
  47. A. Zenisek, The existence and uniquencess theorem in Biot’s consolidation theory. Aplikace Matematiky 29 (1984) 194–211. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you