Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 2921 - 2947
DOI https://doi.org/10.1051/m2an/2021074
Published online 06 December 2021
  1. T. Arens, The scattering of plane elastic waves by a one-dimensional periodic surface. Math. Meth. Appl. Sci. 22 (1999) 55–72. [CrossRef] [Google Scholar]
  2. T. Arens, A new integral equation formulation for the scattering of plane elastic waves by diffraction gratings. J. Integral Equ. Appl. 11 (1999) 275–297. [CrossRef] [Google Scholar]
  3. I. Babuška and A. Aziz, Survey lectures on Mathematical Foundation of the Finite Element Method. In: Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, edited by A. Aziz. Academic Press, New York (1973) 5–359. [Google Scholar]
  4. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [Google Scholar]
  5. G. Bao and H. Wu, On the convergence of the solutions of PML equations for Maxwell’s equations. SIAM J. Numer. Anal. 43 (2005) 2121–2143. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bao, P. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comput. 79 (2010) 1–34. [CrossRef] [Google Scholar]
  7. J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. [Google Scholar]
  8. J.H. Bramble and J.E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comput. 76 (2007) 597–614. [Google Scholar]
  9. J.H. Bramble, J.E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79 (2010) 2079–2101. [Google Scholar]
  10. O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries. J. Opt. Soc. Am. A 10 (1993) 1168–1175. [CrossRef] [Google Scholar]
  11. O. Bruno and F. Reitich, Numerical solution of diffraction problems: a method of variation of boundaries II Finitely conducting grating, Padé approximations and singularities. J. Opt. Soc. Am. A 10 (1993) 2307–2316. [CrossRef] [Google Scholar]
  12. J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77 (2008) 673–698. [Google Scholar]
  13. Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43 (2005) 645–671. [Google Scholar]
  14. Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41 (2003) 799–826. [Google Scholar]
  15. Z. Chen, X. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85 (2016) 2687–2714. [Google Scholar]
  16. W. Chew and W. Weedon, A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave Opt. Tech. Lett. 13 (1994) 599–604. [CrossRef] [Google Scholar]
  17. F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–1090. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamics problem in anisotropic heterogeneous media. Geophysics 66 (2001) 294–307. [CrossRef] [Google Scholar]
  19. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [Google Scholar]
  20. J. Elschner and G. Hu, Scattering of plane elastic waves by three-dimensional diffraction gratings. Math. Meth. Appl. Sci. 22 (2012) 1150019. [CrossRef] [Google Scholar]
  21. D. Givoli and J.B. Keller, Non-reflecting boundary conditions for elastic waves. Wave Motion 12 (1990) 261–279. [CrossRef] [MathSciNet] [Google Scholar]
  22. F.D. Hastings, J.B. Schneider and S.L. Broschat, Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am. 100 (1996) 3061–3069. [CrossRef] [Google Scholar]
  23. T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: convergence of the PML method. SIAM J. Math. Anal. 35 (2003) 547–560. [CrossRef] [MathSciNet] [Google Scholar]
  24. G.C. Hsiao, N. Nigam, J.E. Pasiak and L. Xu, Error analysis of the DtN-FEM for the scattering problem in acoustic via Fourier analysis. J. Comput. Appl. Math. 235 (2011) 4949–4965. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Jiang, P. Li and W. Zheng, Numerical solution of acoustic scattering by an adaptive DtN finite element method. Commun. Comput. Phys. 13 (2013) 1227–1244. [MathSciNet] [Google Scholar]
  26. X. Jiang, P. Li, J. Lv and W. Zheng, An adaptive finite element PML method for the elastic wave scattering problem in periodic structures. ESAIM: M2AN 51 (2017) 2017–2047. [CrossRef] [EDP Sciences] [Google Scholar]
  27. X. Jiang, P. Li, J. Lv and W. Zheng, An adaptive finite element method for the wave scattering with transparent boundary condition. J. Sci. Comput. 72 (2017) 936–956. [CrossRef] [MathSciNet] [Google Scholar]
  28. X. Jiang, P. Li, J. Lv and W. Zheng, Convergence of the PML solution for elastic wave scattering by biperiodic structures. Comm. Math. Sci. 16 (2018) 985–1014. [Google Scholar]
  29. X. Jiang, P. Li, J. Lv, Z. Wang, H. Wu and W. Zheng, An adaptive finite element DtN method for Maxwell’s equation in biperiodic structures. Preprint arXiv:1811.12449 (2018). [Google Scholar]
  30. M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations. Computing 60 (1998) 229–241. [CrossRef] [MathSciNet] [Google Scholar]
  31. P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering problem. Preprint arXiv:1903.03606 (2019). [Google Scholar]
  32. P. Li and X. Yuan, Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures. Comput. Methods Appl. Mech. Eng. 360 (2020) 112722. [CrossRef] [Google Scholar]
  33. P. Li, Y. Wang and Y. Zhao, Inverse elastic surface scattering with near-field data. Inverse Prob. 31 (2015) 035009. [CrossRef] [Google Scholar]
  34. P. Monk, A posterior error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100 (1998) 173–190. [CrossRef] [MathSciNet] [Google Scholar]
  35. P. Morin, R. Nochetto and K. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. [CrossRef] [MathSciNet] [Google Scholar]
  36. PHG (Parallel Hierarchical Grid). http://lsec.cc.ac.cn/phg/. [Google Scholar]
  37. A.H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. [Google Scholar]
  38. R. Verfürth, A Review of A Posterior Error Estimation and Adaptive Mesh Refinement Techniques. Teubner, Stuttgart (1996). [Google Scholar]
  39. Z. Wang, G. Bao, J. Li, P. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53 (2015) 1585–1607. [CrossRef] [MathSciNet] [Google Scholar]
  40. B. Zhang and S.N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces. Math. Methods Appl. Sci. 26 (2003) 463–488. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you