Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 2899 - 2920
DOI https://doi.org/10.1051/m2an/2021076
Published online 06 December 2021
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. H. Ahn, Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations. Quart. Appl. Math. 39 (1981) 109–117. [Google Scholar]
  3. A. Andreev and T. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24 (2004) 309–322. [Google Scholar]
  4. M.G. Armentano, The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: M2AN 38 (2004) 27–36. [CrossRef] [EDP Sciences] [Google Scholar]
  5. M.G. Armentano and C. Padra, A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008) 593–601. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Babuška and J. Osborn, Eigenvalue problems. In: . Handbook of Numerical Analysis, edited by P.G. Lions and P.G. Ciarlet. Vol. II Finite Element Methods (Part 1) . North-Holland, Amsterdam (1991) 641–787. [Google Scholar]
  7. S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Courier Corporation (2005). [Google Scholar]
  8. H. Bi, S. Ren and Y. Yang, Conforming finite element approximations for a fourth-order Steklov eigenvalue problem. Math. Probab. Eng. 2011 (2011) 1–13. [CrossRef] [Google Scholar]
  9. H. Bi, Y. Yang and H. Li, Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 15 (2013) A2575–A2597. [CrossRef] [Google Scholar]
  10. H. Bi, Z. Li and Y. Yang, Local and parallel finite element algorithms for the Steklov eigenvalue problem. Numer. Methods Part. Differ. Equ. 32 (2016) 399–417. [CrossRef] [Google Scholar]
  11. J. Bramble and J. Osborn, Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Elsevier (1972) 387–408. [Google Scholar]
  12. J.H. Bramble and J.E. Pasciak, New convergence estimates for multigrid algorithms. Math. Comput. 49 (1987) 311–329. [CrossRef] [Google Scholar]
  13. J.H. Bramble and X. Zhang, The analysis of multigrid methods. Handb. Numer. Anal. 7 (2000) 173–415. [Google Scholar]
  14. S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
  15. F. Cakoni, D. Colton, S. Meng and P. Monk, Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76 (2016) 1737–1763. [Google Scholar]
  16. J. Canavati and A. Minzoni, A discontinuous Steklov problem with an application to water waves. J. Math. Anal. Appl. 69 (1979) 540–558. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Chatelin, Spectral Approximation of Linear Operators. Academic Press, New York (1983). [Google Scholar]
  18. H. Chen, H. Xie and F. Xu, A full multigrid method for eigenvalue problems. J. Comput. Phys. 322 (2016) 747–759. [Google Scholar]
  19. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  20. X. Dai and A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46 (2008) 295–324. [CrossRef] [Google Scholar]
  21. X. Dong, Y. He, H. Wei and Y. Zhang, Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv. Comput. Math. 44 (2018) 1295–1319. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Du and L. Zuo, Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73 (2017) 129–140. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Du, Y. Hou and L. Zuo, A modified local and parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal. Appl. 435 (2016) 1129–1145. [CrossRef] [MathSciNet] [Google Scholar]
  24. D.V. Evans and P. McIver, Resonant frequencies in a container with a vertical baffle. J. Fluid Mech. 175 (1987) 295–307. [CrossRef] [Google Scholar]
  25. P. Grisvard, Elliptic problems in Nonsmooth Domains. Pitman, Boston, MA (1985). [Google Scholar]
  26. H. Han, Z. Guan and B. He, Boundary element approximation of Steklov eigenvalue problem. J. Chin. Univ. Appl. Math. Ser. A 9 (1994) 231–238. [CrossRef] [Google Scholar]
  27. X. Han, Y. Li and H. Xie, A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods. Numer. Math. Theor. Methods Appl. 8 (2015) 383–405. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. He, J. Xu and A. Zhou, Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24 (2006) 227–238. [MathSciNet] [Google Scholar]
  29. Y. He, L. Mei, Y. Shang and J. Cui, Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations. J. Sci. Comput. 44 (2010) 92–106. [CrossRef] [MathSciNet] [Google Scholar]
  30. J. Huang and T. Lü, The mechanical quadrature methods and their extrapolation for solving BIE of Steklov eigenvalue problems. J. Comput. Math. 22 (2004) 719–726. [MathSciNet] [Google Scholar]
  31. S. Jia, H. Xie, M. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems. Sci. Chin. Math. 59 (2016) 2037–2048. [CrossRef] [Google Scholar]
  32. Q. Li, Q. Lin and H. Xie, Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math. 58 (2013) 129–151. [CrossRef] [MathSciNet] [Google Scholar]
  33. Y. Li, X. Han, H. Xie and C. You, Local and parallel finite element algorithm based on multilevel discretization for eigenvalue problem. Int. J. Numer. Anal. Model. 13 (2016) 73–89. [MathSciNet] [Google Scholar]
  34. Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems. Math. Comput. 84 (2015) 71–88. [Google Scholar]
  35. Q. Liu and Y. Hou, Local and parallel finite element algorithms for time-dependent convection-diffusion equations. Appl. Math. Mech. Engl. Ed. 30 (2009) 787–794. [CrossRef] [Google Scholar]
  36. Y. Ma, Z. Zhang and C. Ren, Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier-Stokes equations. Appl. Math. Comput. 175 (2006) 786–813. [MathSciNet] [Google Scholar]
  37. F. Ma, Y. Ma and W. Wo, Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28 (2007) 27–35. [CrossRef] [MathSciNet] [Google Scholar]
  38. G. Monzón, A virtual element method for a biharmonic Steklov eigenvalue problem. Adv. Pure Appl. Math. 10 (2019) 1–13. [CrossRef] [MathSciNet] [Google Scholar]
  39. J. Planchard and B. Thomas, On the dynamical stability of cylinders placed in cross-flow. J. Fluids Struct. 7 (1993) 321–339. [CrossRef] [Google Scholar]
  40. Y. Shang and K. Wang, Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algorithms 54 (2010) 195–218. [CrossRef] [MathSciNet] [Google Scholar]
  41. Y. Shang, Y. He and Z. Luo, A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations. Comput. Fluids 40 (2011) 249–257. [CrossRef] [MathSciNet] [Google Scholar]
  42. Q. Tang and Y. Huang, Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70 (2017) 149–174. [CrossRef] [MathSciNet] [Google Scholar]
  43. W.J. Tang, Z. Guan and H.D. Han, Boundary element approximation of Steklov eigenvalue problem for helmholtz equation. J. Comput. Math. 2 (1998) 165–178. [Google Scholar]
  44. E.B. Watson and D.V. Evans, Resonant frequencies of a fluid in containers with internal bodies. J. Eng. Math. 25 (1991) 115–135. [CrossRef] [Google Scholar]
  45. Z. Weng, S. Zhai and X. Feng, An improved two-grid finite element method for the Steklov eigenvalue problem. Appl. Math. Model. 39 (2015) 2962–2972. [CrossRef] [MathSciNet] [Google Scholar]
  46. H. Xie, A multigrid method for eigenvalue problem. J. Comput. Phys. 274 (2014) 550–561. [Google Scholar]
  47. H. Xie, A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014) 592–608. [Google Scholar]
  48. J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. [CrossRef] [MathSciNet] [Google Scholar]
  49. F. Xu, A full multigrid method for the Steklov eigenvalue problem. Int. J. Comput. Math. 96 (2019) 2371–2386. [CrossRef] [MathSciNet] [Google Scholar]
  50. F. Xu and Q. Huang, Local and parallel multigrid method for nonlinear eigenvalue problems. J. Sci. Comput. 82 (2020) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  51. J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69 (1999) 881–909. [CrossRef] [Google Scholar]
  52. J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70 (2001) 17–25. [Google Scholar]
  53. J. Xu and A. Zhou, Local and parallel finite element algorithms for eigenvalue problems. Acta. Math. Appl. Sin. Engl. Ser. 18 (2002) 185–200. [CrossRef] [MathSciNet] [Google Scholar]
  54. Y. Yang, Y. Zhang and H. Bi, Non-conforming Ciarlet-Raviart element approximation for Stekloff eigenvalues in inverse scattering. Adv. Comput. Math. 46 (2020) 1–25. [Google Scholar]
  55. J. Yu, F. Shi and H. Zheng, Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36 (2014) C547–C567. [CrossRef] [Google Scholar]
  56. R. Zhao, Y. Yang and H. Bi, Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration. Numer. Methods Part. Differ. Equ. 35 (2019) 851–869. [CrossRef] [Google Scholar]
  57. H. Zheng, J. Yu and F. Shi, Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65 (2015) 512–532. [CrossRef] [MathSciNet] [Google Scholar]
  58. H. Zheng, F. Shi, Y. Hou, J. Zhao, Y. Cao and R. Zhao, New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435 (2016) 1–19. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you