Open Access
Issue
ESAIM: M2AN
Volume 55, Number 6, November-December 2021
Page(s) 2643 - 2678
DOI https://doi.org/10.1051/m2an/2021066
Published online 11 November 2021
  1. H. Abboud, V. Girault and T. Sayah, A second order accuracy in time for a full discretized time-dependent Navier-Stockes equations by a two-grid scheme. Numer. Math. 114 (2009) 189–231. [Google Scholar]
  2. J.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  3. B. Amaziane, M. Bourgeois and M. El Fatini, Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous porous media. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 69 (2014) 687–699. [Google Scholar]
  4. C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat and T. Sayah, Finite element method for Darcy’s problem coupled with the heat equation. Numer. Math. 139 (2018) 315–348. [Google Scholar]
  5. C. Bernardi and V. Girault, A local regularisation operation for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. [Google Scholar]
  6. C. Bernardi, S. Maarouf and D. Yakoub, Spectral discretization of Darcy’s equations coupled with the heat equation. IMA J. Numer. Anal. 36 (2015) 1193–1216. [Google Scholar]
  7. C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations dePlease check & approve edit of the journal title of ref [7] Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. ESAIM:M2AN 29 (1995) 871–921. [Google Scholar]
  8. O.R. Burggraf, Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24 (1996) 113–151. [Google Scholar]
  9. N. Chalhoub, P. Omnes, T. Sayah and R. El Zahlaniyeh, Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system. Calcolo 57 (2020) 4. [Google Scholar]
  10. N. Chalhoub, P. Omnes, T. Sayah and R. El Zahlaniyeh, A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system. Calcolo (submitted). [Google Scholar]
  11. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, North-Holland, volume II of Finite Element Methods (Part 1). North-Holland, Amsterdam (1991) pp. 17–351. [Google Scholar]
  12. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  13. J. Deteix, A. Jendoubi and D. Yakoubi, A coupled prediction scheme for solving the Navier-Stokes and convection-diffusion equations. SIAM J. Numer. Anal. 52 (2014) 2415–2439. [Google Scholar]
  14. D. Dib, S. Dib and T. Sayah, New numerical studies for Darcy’s problem coupled with the heat equation. Comput. Appl. Math. 39 (2020) 1. [Google Scholar]
  15. S. Dib, V. Girault, F. Hecht and T. Sayah, A posteriori error estimates for Darcy’s problem coupled with the heat equation. ESAIM: M2AN 53 (2019) 2121–2159. [Google Scholar]
  16. E. Erturk, T.C. Corke and C. Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48 (2005) 747–774. [Google Scholar]
  17. P. Fabrie, Regularity of the solution of Darcy-Forchheimer’s equation. Nonlinear Anal. Theory Methods 13 (1989) 1025–1045. [Google Scholar]
  18. E. Feireisl and A. Novotny, Singular limits in thermodynamics of viscous fluids. Adv. Math. Fluid Mech. Birkhäuser, Basel (2009). [Google Scholar]
  19. P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45 (1901) 1782–1788. [Google Scholar]
  20. M. Gaultier and M. Lezaun, Équations de Navier-Stokes couplées à des équations de la chaleur: Résolution par une méthode de point fixe en dimension infinie. Ann. Sci. Math. Québec 13 (1989) 1–17. [Google Scholar]
  21. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Vol. 224 of Classics in Mathematics. Springer, Berlin (2001). [Google Scholar]
  22. V. Girault and J.L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes problem. ESAIM: M2AN 35 (2001) 945–980. [Google Scholar]
  23. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, in Theory and Algorithms, SCM 5. Springer, Berlin (1986). [Google Scholar]
  24. V. Girault and M.F. Wheeler, Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110 (2008) 161–198. [Google Scholar]
  25. F. Hecht, development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. [Google Scholar]
  26. J.S. Jose, H. Lopez and B. Molina, Comparison between different numerical discretizations for a Darcy-Forchheimer model. Electron. Trans. Numer. Anal. 34 (2009) 187–203. [Google Scholar]
  27. M. Kawaguti, Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity. J. Phys. Soc. Jpn 16 (1961) 2307–2315. [Google Scholar]
  28. H. Lopez, B. Molina and J.J. Salas, An analysis of a mixed finite element method for a Darcy-Forchsheimer model. Math. Comput. Model. 57 (2013) 2325–2338. [Google Scholar]
  29. H. Ma and D. Ruth, On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7 (1992) 255–264. [Google Scholar]
  30. J. Nečas, Les Méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
  31. S.P. Neuman, Theoretical derivation of Darcy’s law. Acta Mech. 25 (1977) 153–170. [Google Scholar]
  32. H. Pan and H. Rui, Mixed element method for two-dimensional Darcy-Forchheimer model. J. Sci. Comput. 52 (2012) 563–587. [Google Scholar]
  33. T. Sayah, Convergence analysis of numerical schemes for the Darcy-Forchheimer problem. Mediterr. J. Math. (2021) (submitted). [Google Scholar]
  34. R. Schreiber and H.B. Keller, Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49 (1983) 310–333. [Google Scholar]
  35. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [Google Scholar]
  36. A.V. Shenoy, Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transp. Porous Med. 11 (1993) 219–241. [Google Scholar]
  37. S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Med. 1 (1986) 3–25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you