Open Access
Issue
ESAIM: M2AN
Volume 56, Number 1, January-February 2022
Page(s) 1 - 40
DOI https://doi.org/10.1051/m2an/2021083
Published online 11 January 2022
  1. Ambartsumyan, I., Khattatov, E., Yotov, I., & Zunino, P. 2015, in Simulation of flow in fractured poroelastic media: a comparison of different discretization approaches. Finite Difference Methods, Theory and Applications, (SciCham: Springer), Lecture Notes in Comput., 9045, 3–14 [MathSciNet] [Google Scholar]
  2. I. Ambartsumyan, E. Khattatov, I. Yotov and P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math., 140, (2018) 513–553 [Google Scholar]
  3. I. Ambartsumyan, V.J. Ervin, T. Nguyen and I. Yotov, A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM: M2AN, 53, (2019) 1915–1955 [CrossRef] [EDP Sciences] [Google Scholar]
  4. I. Ambartsumyan, E. Khattatov, T. Nguyen and I. Yotov, Flow and transport in fractured poroelastic media. GEM Int. J. Geomath., 10, (2019) 1–34 [CrossRef] [Google Scholar]
  5. I. Ambartsumyan, E. Khattatov, J.M. Nordbotten and I. Yotov, A multipoint stress mixed finite element method for elasticity on simplicial grids. SIAM J. Numer. Anal., 58, (2020) 630–656 [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Ambartsumyan, E. Khattatov and I. Yotov, A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech. Eng., 372, (2020) 113407 [CrossRef] [Google Scholar]
  7. I. Ambartsumyan, E. Khattatov, J.M. Nordbotten and I. Yotov, A multipoint stress mixed finite element method for elasticity on quadrilateral grids. Numer. Methods Part. Differ. Equ., 37, (2021) 1886–1915 [CrossRef] [Google Scholar]
  8. D. Arnold and J. Lee, Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal., 52, (2014) 2743–2769 [CrossRef] [MathSciNet] [Google Scholar]
  9. D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp., 76, (2007) 1699–1723 [Google Scholar]
  10. D.N. Arnold, G. Awanou and W. Qiu, Mixed finite elements for elasticity on quadrilateral meshes. Adv. Comput. Math., 41, (2015) 553–572 [Google Scholar]
  11. S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys., 228, (2009) 7986–8014 [Google Scholar]
  12. Y. Bazilevs, K. Takizawa and T.E. Tezduyar, Computational Fluid-Structure Interaction: Methods and Applications. John Wiley& Sons (2013) [CrossRef] [Google Scholar]
  13. G.S. Beavers and D.D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech, 30, (1967) 197–207 [CrossRef] [Google Scholar]
  14. E.A. Bergkamp, C.V. Verhoosel, J.J.C. Remmers and D.M.J. Smeulders, A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance. Comput. Geosci., 24, (2020) 1497–1522 [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Biot, General theory of three-dimensional consolidation. J. Appl. Phys., 12, (1941) 155–164 [Google Scholar]
  16. Boffi, D., Brezzi, F., Demkowicz, L. F., Durán, R. G., & Falk, R. S. 2008, in Mixed Finite Elements, Compatibility Conditions, and Applications, (Berlin; Fondazione C.I.M.E., Florence: Springer-Verlag), Lecture Notes in Mathematics, 1939 [CrossRef] [Google Scholar]
  17. Brezzi, F. 1991, in Mixed and Hybrid Finite Element Methods, (New York: Springer-Verlag), Springer Series in Computational Mathematics, 15 [CrossRef] [Google Scholar]
  18. Bukač, M., Yotov, I., Zakerzadeh, R., & Zunino, P. in Effects of poroelasticity on fluid-structure interaction in arteries: a computational sensitivity study. In: Modeling the Heart and the Circulatory System, (Cham: Springer), MS&A. Model. Simul. Appl., 14, 197–220 [Google Scholar]
  19. M. Bukač, I. Yotov, R. Zakerzadeh and P. Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng., 292, (2015) 138–170 [CrossRef] [Google Scholar]
  20. M. Bukač, I. Yotov and P. Zunino, An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Part. Differ. Equ., 31, (2015) 1054–1100 [CrossRef] [Google Scholar]
  21. M. Bukač, I. Yotov and P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN, 51, (2017) 1429–1471 [EDP Sciences] [Google Scholar]
  22. H. -J. Bungartz, & M. Schäfer, Fluid-structure Interaction: Modelling, Simulation, Optimisation. Vol. 53. Springer Science& Business Media (2006). [CrossRef] [Google Scholar]
  23. S. Cesmelioglu, Analysis of the coupled Navier-Stokes/Biot problem. J. Math. Anal. Appl., 456, (2017) 970–991 [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Cesmelioglu and P. Chidyagwai, Numerical analysis of the coupling of free fluid with a poroelastic material. Numer. Methods Part. Differ. Equ., 36, (2020) 463–494 [CrossRef] [Google Scholar]
  25. Cesmelioglu, A., Lee, H., Quaini, A., Wang, K., & Yi, S. Y. 2016, in Optimization-based decoupling algorithms for a fluid-poroelastic system. In: Topics in Numerical Partial Differential Equations and Scientific Computing., (New York: Springer), IMA Vol. Math. Appl., 160, 79–98 [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Ciarlet, The Finite Element Method for Elliptic Problems, 4. Amsterdam-New York-Oxford: Studies in Mathematics and its Applications. North-Holland Publishing Co. (1978) [Google Scholar]
  27. T. Davis, Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30, (2004) 196–199 [CrossRef] [Google Scholar]
  28. M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math., 43, (2002) 57–74 [Google Scholar]
  29. H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press (2014) [CrossRef] [Google Scholar]
  30. V.J. Ervin, E.W. Jenkins and S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal., 47, (2009) 929–952 [Google Scholar]
  31. M. Fernández, Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. C.R. Math., 349, (2011) 473–477 [CrossRef] [Google Scholar]
  32. Galdi, G. P. Fundamental Trends in Fluid-structure Interaction. Vol. 1 of Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications (Hackensack, NJ: World Scientific Publishing Co., Pte. Ltd.) [Google Scholar]
  33. J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal., 26, (2007) 350–384 [Google Scholar]
  34. G. Gatica, S. Meddahi and R. Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal., 29, (2009) 86–108 [Google Scholar]
  35. G. Gatica, A. Márquez, R. Oyarzúa and R. Rebolledo, Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Eng., 270, (2014) 76–112 [CrossRef] [Google Scholar]
  36. F. Hecht, New development in FreeFem++. J. Numer. Math., 20, (2012) 251–265 [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Jayadharan, E. Khattatov and I. Yotov, Domain decomposition methods for mixed finite element discretizations of the Biot system of poroelasticity. Comput. Geosci., 25, (2021) 1919–1938 [CrossRef] [MathSciNet] [Google Scholar]
  38. E. Khattatov and I. Yotov, Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry. ESAIM: M2AN, 53, (2019) 2081–2108 [CrossRef] [EDP Sciences] [Google Scholar]
  39. H. Kunwar, H. Lee and K. Seelman, Second-order time discretization for a coupled quasi-Newtonian fluid-poroelastic system. Int. J. Numer. Methods Fluids, 92, (2020) 687–702 [CrossRef] [Google Scholar]
  40. W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40, (2002) 2195–2218 [Google Scholar]
  41. J. Lee, Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput., 69, (2016) 610–632 [CrossRef] [MathSciNet] [Google Scholar]
  42. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput., 26, (2005) 1667–1691 [Google Scholar]
  43. T. Richter, Fluid-structure Interactions: Models, Analysis and Finite Elements, 118. Springer (2017) [CrossRef] [Google Scholar]
  44. B. Riviere and I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal., 42, (2005) 1959–1977 [CrossRef] [MathSciNet] [Google Scholar]
  45. P.G. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math., 2, (1971) 93–101 [CrossRef] [Google Scholar]
  46. Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Vol. 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997) [Google Scholar]
  47. Showalter, R. E. in Poroelastic filtration coupled to Stokes flow. In: Control Theory of Partial Differential Equations, (Boca Raton, FL: Chapman& Hall/CRC), Lect. Notes Pure Appl. Math., 242, 229–241 [Google Scholar]
  48. R.E. Showalter, Nonlinear degenerate evolution equations in mixed formulation. SIAM J. Math. Anal., 42, (2010) 2114–2131 [CrossRef] [MathSciNet] [Google Scholar]
  49. D. Vassilev, C. Wang and I. Yotov, Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng., 268, (2014) 264–283 [Google Scholar]
  50. J. Wen and Y. He, A strongly conservative finite element method for the coupled Stokes-Biot model. Comput. Math. Appl., 80, (2020) 1421–1442 [CrossRef] [MathSciNet] [Google Scholar]
  51. H.K. Wilfrid, Nonconforming finite element methods for a Stokes/Biot fluid-poroelastic structure interaction model. Results Appl. Math., 7, (2020) [Google Scholar]
  52. S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Meth. Partial. Differ. Equ., 30, (2014) 1189–1210 [CrossRef] [Google Scholar]
  53. S.-Y. Yi, A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal., 55, (2017) 1915–1936 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you