Open Access
Issue |
ESAIM: M2AN
Volume 56, Number 1, January-February 2022
|
|
---|---|---|
Page(s) | 261 - 285 | |
DOI | https://doi.org/10.1051/m2an/2021082 | |
Published online | 10 February 2022 |
- G. Allaire and R. Brizzi. A multiscale finite element method for numerical homogenization, SIAM Multiscale Model. Simul. 4 (2005) 790–812. [CrossRef] [MathSciNet] [Google Scholar]
- R. Araya, G.R. Barrenechea, L.P. Franca and F. Valentin, Stabilization arising from PGEM: a review and further developments. Appl. Numer. Math. 59 (2009) 2065–2081. [CrossRef] [MathSciNet] [Google Scholar]
- R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51 (2013) 3505–3531. [Google Scholar]
- T. Arbogast and K.J. Boyd, Subgrid upscaling and mixed multiscale finite elements. SIAM J. Numer. Anal. 44 (2006) 1150–1171. [CrossRef] [MathSciNet] [Google Scholar]
- T. Arbogast, G. Pencheva, M.F. Wheeler and I. Yotov, A multiscale mortar mixed finite element method. SIAM Multiscale Model. Simul. 6 (2007) 319–346. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška and E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. [CrossRef] [MathSciNet] [Google Scholar]
- G.R. Barrenechea, F. Jaillet, D. Paredes and F. Valentin, The multiscale hybrid mixed method in general polygonal meshes. Numer. Math. 145 (2020) 197–237. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [Google Scholar]
- F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4 (1994) 571–587. [CrossRef] [Google Scholar]
- F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96 (1992) 117–129. [CrossRef] [Google Scholar]
- F. Brezzi, L.P. Franca, T.J.R. Hughes and A. Russo, b = ∫g. Comput. Methods Appl. Mech. Eng. 145 (1997) 329–339. [CrossRef] [Google Scholar]
- A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer, Cham (2017). [CrossRef] [Google Scholar]
- Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp. 72 (2002) 541–576. [CrossRef] [Google Scholar]
- M. Cicuttin, A. Ern and S. Lemaire, A hybrid high-order method for highly oscillatory elliptic problems. Comput. Methods Appl. Math. 19 (2019) 723–748. [CrossRef] [MathSciNet] [Google Scholar]
- M. Cicuttin, A. Ern and S. Lemaire, On the implementation of a multiscale hybrid high-order method. In: Numerical Mathematics and Advanced Applications – ENUMATH 2017. Vol. 126 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2019) 509–517. [CrossRef] [Google Scholar]
- M. Cicuttin, A. Ern and N. Pignet, Hybrid High-Order Methods. A Primer with Applications to Solid Mechanics. SpringerBriefs in Mathematics. Springer, Cham (2021). [CrossRef] [Google Scholar]
- D. Copeland, U. Langer and D. Pusch, From the boundary element domain decomposition methods to local trefftz finite element methods on polyhedral meshes. In: Domain Decomposition Methods in Science and Engineering XVIII. Vol. 70 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2009) 315–322. [CrossRef] [Google Scholar]
- D.A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes. Vol. 19 of Modeling, Simulation and Applications. Springer, Cham (2020). [CrossRef] [Google Scholar]
- D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications [Mathematics & Applications]. Vol. 69. Springer-Verlag, Berlin (2012). [CrossRef] [Google Scholar]
- D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. [Google Scholar]
- D.A. Di Pietro, A. Ern and S. Lemaire, A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations Vol. 114 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) 205–236. [CrossRef] [Google Scholar]
- D.A. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. [Google Scholar]
- O. Durán, P.R.B. Devloo, S.M. Gomes and F. Valentin, A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. Comput. Methods Appl. Mech. Eng. 354 (2019) 213–244. [CrossRef] [Google Scholar]
- Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods – Theory and Applications. Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009). [Google Scholar]
- Y. Efendiev, T.Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37 (2000) 888–910. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Efendiev, J. Galvis and T.Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251 (2013) 116–135. [Google Scholar]
- Y. Efendiev, R. Lazarov and K. Shi, A multiscale HDG method for second order elliptic equations. Part I: polynomial and homogenization-based multiscale spaces. SIAM J. Numer. Anal. 53 (2015) 342–369. [CrossRef] [MathSciNet] [Google Scholar]
- A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. [EDP Sciences] [Google Scholar]
- R. Glowinski and M.F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Philadelphia). SIAM (1988) 144–172. [Google Scholar]
- C. Harder and F. Valentin, Foundations of the MHM method. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Vol. 114 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2016) 401–433. [CrossRef] [Google Scholar]
- C. Harder, D. Paredes and F. Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients. J. Comput. Phys. 245 (2013) 107–130. [CrossRef] [MathSciNet] [Google Scholar]
- P. Henning and D. Peterseim, Oversampling for the multiscale finite element method. SIAM Multiscale Model. Simul. 11 (2013) 1149–1175. [CrossRef] [MathSciNet] [Google Scholar]
- J.S. Hesthaven, S. Zhang and X. Zhu, High-order multiscale finite element method for elliptic problems. SIAM Multiscale Model. Simul. 12 (2014) 650–666. [CrossRef] [MathSciNet] [Google Scholar]
- T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comp. Phys. 134 (1997) 169–189. [Google Scholar]
- T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913–943. [CrossRef] [MathSciNet] [Google Scholar]
- T.Y. Hou, X.-H. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci. 2 (2004) 185–205. [CrossRef] [MathSciNet] [Google Scholar]
- T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401. [CrossRef] [Google Scholar]
- T.J.R. Hughes, G.R. Feijó, L.M. Mazzei and J.-B. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg. 166 (1998) 3–24. [CrossRef] [MathSciNet] [Google Scholar]
- C. Le Bris, F. Legoll and A. Lozinski, MsFEM à la Crouzeix–Raviart for highly oscillatory elliptic problems. Ch. Ann. Math. Ser. B 34 (2013) 113–138. [CrossRef] [Google Scholar]
- C. Le Bris, F. Legoll and A. Lozinski, An MsFEM-type approach for perforated domains. SIAM Multiscale Model. Simul. 12 (2014) 1046–1077. [CrossRef] [MathSciNet] [Google Scholar]
- A.L. Madureira and M. Sarkis, Hybrid localized spectral decomposition for multiscale problems. SIAM J. Numer. Anal. 59 (2021) 829–863. [CrossRef] [MathSciNet] [Google Scholar]
- A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. [Google Scholar]
- L. Mu, J. Wang and X. Ye, A Weak Galerkin generalized multiscale finite element method. J. Comp. Appl. Math. 305 (2016) 68–81. [CrossRef] [Google Scholar]
- D. Paredes, F. Valentin and H.M. Versieux, On the robustness of multiscale hybrid-mixed methods. Math. Comp. 86 (2017) 525–548. [Google Scholar]
- P.-A. Raviart and J.-M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31 (1977) 391–413. [CrossRef] [MathSciNet] [Google Scholar]
- A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). [CrossRef] [Google Scholar]
- A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. [CrossRef] [MathSciNet] [Google Scholar]
- M. Vohralík and B.I. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. [CrossRef] [MathSciNet] [Google Scholar]
- S. Weißer, BEM-based Finite Element Approaches on Polytopal Meshes. Vol. 130 of Lecture Notes in Computational Science and Engineering. Springer, Cham (2019). [Google Scholar]
- M.F. Wheeler, G. Xue and I. Yotov, A multiscale mortar multipoint flux mixed finite element method. Math. Models Methods Appl. Sci. 46 (2012) 759–796. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.