Open Access
Issue
ESAIM: M2AN
Volume 56, Number 1, January-February 2022
Page(s) 237 - 260
DOI https://doi.org/10.1051/m2an/2022006
Published online 10 February 2022
  1. A. Abdulle and P. Henning, A reduced basis localized orthogonal decomposition. J. Comput. Phys. 295 (2015) 379–401. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. Multiscale Model. Simul. 9 (2011) 513–544. [Google Scholar]
  3. A. Anantharaman and C. Le Bris, Elements of mathematical foundations for numerical approaches for weakly random homogenization problems. Commun. Comput. Phys. 11 (2012) 1103–1143. [Google Scholar]
  4. S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative Stochastic Homogenization and Large-Scale Regularity. Volume 352 of Grundlehren der Mathematischen Wissenschaften. Springer, Cham (2019). [CrossRef] [Google Scholar]
  5. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. [Google Scholar]
  6. A. Barth, C. Schwab and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119 (2011) 123–161. [CrossRef] [MathSciNet] [Google Scholar]
  7. X. Blanc, C. Le Bris and F. Legoll, Some variance reduction methods for numerical stochastic homogenization. Philos. Trans. Roy. Soc. A 374 (2016) 20150168. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. K.A. Cliffe, M.B. Giles, R. Scheichl and A.L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14 (2011) 3–15. [CrossRef] [MathSciNet] [Google Scholar]
  9. Y. Efendiev, C. Kronsbein and F. Legoll, Multilevel Monte Carlo approaches for numerical homogenization. Multiscale Model. Simul. 13 (2015) 1107–1135. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Elfverson, V. Ginting and P. Henning, On multiscale methods in Petrov-Galerkin formulation. Numer. Math. 131 (2015) 643–682. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Elfverson, F. Hellman and A. Målqvist, A multilevel Monte Carlo method for computing failure probabilities. SIAM/ASA J. Uncertain. Quant. 4 (2016) 312–330. [CrossRef] [Google Scholar]
  12. C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. [Google Scholar]
  13. M. Feischl and D. Peterseim, Sparse compression of expected solution operators. SIAM J. Numer. Anal. 58 (2020) 3144–3164. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Fischer, D. Gallistl and D. Peterseim, A priori error analysis of a numerical stochastic homogenization method. SIAM J. Numer. Anal. 59 (2021) 660–674. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Gallistl and D. Peterseim, Computation of quasi-local effective diffusion tensors and connections to the mathematical theory of homogenization. Multiscale Model. Simul. 15 (2017) 1530–1552. [Google Scholar]
  16. D. Gallistl and D. Peterseim, Numerical stochastic homogenization by quasilocal effective diffusion tensors. Commun. Math. Sci. 17 (2019) 637–651. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Gloria, S. Neukamm and F. Otto, Quantitative estimates in stochastic homogenization for correlated coefficient fields. Preprint arXiv:1910.05530 (2019). [Google Scholar]
  18. M.D. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23 (2014) 521–650. [Google Scholar]
  19. F. Hellman and T. Keil, Gridlod. https://github.com/fredrikhellman/gridlod. (2019). GitHub repository. [Google Scholar]
  20. F. Hellman and A. Målqvist, Numerical homogenization of elliptic PDEs with similar coefficients. Multiscale Model. Simul. 17 (2019) 650–674. [CrossRef] [MathSciNet] [Google Scholar]
  21. F. Hellman, T. Keil and A. Målqvist, Numerical upscaling of perturbed diffusion problems. SIAM J. Sci. Comput. 42 (2020) A2014–A2036. [CrossRef] [Google Scholar]
  22. P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth and M. Kästner, A diffuse modeling approach for embedded interfaces in linear elasticity. GAMM-Mitt. 43 (2020) e202000001. [CrossRef] [Google Scholar]
  23. P. Henning and D. Peterseim, Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11 (2013) 1149–1175. [Google Scholar]
  24. C. Le Bris, Homogenization theory and multiscale numerical approaches for disordered media: some recent contributionsIn: Congrès SMAI 2013. Volume 45 of ESAIM Proc. Surveys. EDP Sci., Les Ulis (2014) 18–31. [Google Scholar]
  25. C. Le Bris and F. Thomines, A reduced basis approach for some weakly stochastic multiscale problems. Chin. Ann. Math. Ser. B 33 (2012) 657–672. [CrossRef] [MathSciNet] [Google Scholar]
  26. C. Le Bris, F. Legoll and F. Thomines, Multiscale finite element approach for “weakly” random problems and related issues. ESAIM: M2AN 48 (2014) 815–858. [CrossRef] [EDP Sciences] [Google Scholar]
  27. F. Legoll and W. Minvielle, A control variate approach based on a defect-type theory for variance reduction in stochastic homogenization. Multiscale Model. Simul. 13 (2015) 519–550. [CrossRef] [MathSciNet] [Google Scholar]
  28. G.J. Lord, C.E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2014). [Google Scholar]
  29. A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [Google Scholar]
  30. A. Målqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition. SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), SIAM Spotlights (2020). [Google Scholar]
  31. M. Ohlberger and B. Verfürth, Localized orthogonal decomposition for two-scale Helmholtz-type problems. AIMS Math. 2 (2017) 458–478. [CrossRef] [Google Scholar]
  32. N. Ou, G. Lin and L. Jiang, A low-rank approximated multiscale method for PDEs with random coefficients. Multiscale Model. Simul. 18 (2020) 1595–1620. [CrossRef] [MathSciNet] [Google Scholar]
  33. A.L. Teckentrup, R. Scheichl, M.B. Giles and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125 (2013) 569–600. [CrossRef] [MathSciNet] [Google Scholar]
  34. Z. Zhang, M. Ci and T.Y. Hou, A multiscale data-driven stochastic method for elliptic PDEs with random coefficients. Multiscale Model. Simul. 13 (2015) 173–204. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you