Open Access
Volume 56, Number 2, March-April 2022
Page(s) 433 - 450
Published online 18 February 2022
  1. K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series. Vol. 48. Princeton University Press, Princeton, NJ (2009). [Google Scholar]
  2. E. Carelli, J. Haehnle and A. Prohl, Convergence analysis for incompressible generalized newtonian fluid flows with nonstandard anisotropic growth conditions. SIAM J. Numer. Anal. 48 (2010) 164–190. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics. Vol. 35, Springer-Verlag, Berlin (2004). [Google Scholar]
  4. L. Diening and M. Růžička, Interpolation operators in Orlicz-Sobolev spaces. Numer. Math. 107 (2007) 107–129. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Diening, M. Fornasier, R. Tomasi and M. Wank, A relaxed Kačanov iteration for the p-Poisson problem. Numer. Math. 145 (2020) 1–34. [CrossRef] [MathSciNet] [Google Scholar]
  6. F.J. Galindo-Rosales, F.J. Rubio-Hernández and A. Sevilla, An apparent viscosity function for shear thickening fluids. J. Non-Newtonian Fluid Mech. 166 (2011) 321–325. [CrossRef] [Google Scholar]
  7. E.M. Garau, P. Morin and C. Zuppa, Convergence of an adaptive Kačanov FEM for quasi-linear problems. Appl. Numer. Math. 61 (2011) 512–529. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Haberl, D. Praetorius, S. Schimanko and M. Vohralk, Convergence and quasi-optimal cost of adaptive algorithms for nonlinear operators including iterative linearization and algebraic solver. Numer. Math. 147 (2021) 679–725. [CrossRef] [MathSciNet] [Google Scholar]
  9. W. Han, S. Jensen and I. Shimansky, The Kačanov method for some nonlinear problems. Appl. Numer. Meth. 24 (1997) 57–79. [CrossRef] [Google Scholar]
  10. P. Heid and E. Süli, Adaptive iterative linearised finite element methods for implicitly constituted incompressible fluid flow problems and its application to Bingham fluids. Tech. Report arxiv:2109.05991 (2021). [Google Scholar]
  11. P. Heid and E. Süli, On the convergence rate of the Kačanov scheme for shear-thinning fluids. Calcolo 59 (2022) 27. [CrossRef] [Google Scholar]
  12. P. Heid and T.P. Wihler, Adaptive iterative linearization Galerkin methods for nonlinear problems. Math. Comp. 89 (2020) 2707–2734. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Heid and T.P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods. Calcolo 57 (2020) 23. [CrossRef] [Google Scholar]
  14. P. Heid, D. Praetorius and T.P. Wihler, Energy contraction and optimal convergence of adaptive iterative linearized finite element methods. Comput. Methods Appl. Math. 21 (2021) 407–422. [CrossRef] [MathSciNet] [Google Scholar]
  15. L.M. Kačanov, Variational methods of solution of plasticity problems. J. Appl. Math. Mech. 23 (1959) 880–883. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Zeidler, Nonlinear Functional Analysis and its Applications. IV. Applications to Mathematical Physics, Translated from the German and with a preface by Juergen Quandt. Springer-Verlag, New York (1988). [CrossRef] [Google Scholar]
  17. E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Springer-Verlag, New York (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you