Open Access
Volume 56, Number 2, March-April 2022
Page(s) 451 - 483
Published online 24 February 2022
  1. G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25 (2009) 123004. [CrossRef] [Google Scholar]
  2. A. Angeloski, M. Discacciati, C. Legendre, G. Lielens and A. Huerta, Challgences for time and frequency domain aeroacoustic solvers. In: 11th World Congress on Computational Mechanics (WCCM XI); 5th European Conference on Computationnal Mechanics (ECCM V); 6th European Conference on Computational Fluid Dynamics (ECFD VI) (2014). [Google Scholar]
  3. O.V. Atassi, Computing the sound power in non-uniform flow. J. Sound Vib. 266 (2003) 75–92. [CrossRef] [Google Scholar]
  4. P. Azérad and J. Pousin, Inégalité de poincaré courbe pour le traitement variationnel de l’équation de transport. C. R. Acad. Sci. Sér. 1 Math. 322 (1996) 721–727. [Google Scholar]
  5. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. de l’École Norm. Supérieure 3 (1970) 185–233. [CrossRef] [Google Scholar]
  6. E. Bécache, A.B.-B. Dhia and G. Legendre, Perfectly matched layers for the convected Helmholtz equation. SIAM J. Numer. Anal. 42 (2004) 409–433. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Bécache, A.-S. Bonnet Ben-Dhia and G. Legendre, Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow. SIAM J. Numer. Anal. 44 (2006) 1191–1217. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Bensalah, Une approche nouvelle de la modélisation mathématique et numérique en aéroacoustique par les équations de Goldstein et applications en aéronautique. Ph.D. thesis, ENSTA ParisTech (2018). [Google Scholar]
  9. A. Bensalah, P. Joly and J.-F. Mercier, Well-posedness of a generalized time-harmonic transport equation for acoustics in flow. Math. Methods Appl. Sci. 41 (2018) 3117–3137. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. [CrossRef] [Google Scholar]
  11. S.E.P. Bergliaffa, K. Hibberd, M. Stone and M. Visser, Wave equation for sound in fluids with vorticity. Phys. D: Nonlinear Phenom. 191 (2004) 121–136. [CrossRef] [Google Scholar]
  12. D. Blokhintzev, The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18 (1946) 322–328. [CrossRef] [Google Scholar]
  13. A.-S. Bonnet Ben-Dhia, E.-M. Duclairoir, G. Legendre and J.-F. Mercier, Time-harmonic acoustic propagation in the presence of a shear flow. J. Comput. Appl. Math. 204 (2007) 428–439. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.-S. Bonnet Ben-Dhia, J.-F. Mercier, F. Millot and S. Pernet, A low-mach number model for time-harmonic acoustics in arbitrary flows. J. Comput. Appl. Math. 234 (2010) 1868–1875. [CrossRef] [MathSciNet] [Google Scholar]
  15. A.-S. Bonnet Ben-Dhia, J.-F. Mercier, F. Millot, S. Pernet and E. Peynaud, Time-harmonic acoustic scattering in a complex flow: a full coupling between acoustics and hydrodynamics. Commun. Comput. Phys. 11 (2012) 555–572. [CrossRef] [MathSciNet] [Google Scholar]
  16. A.N. Brooks and T.J. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259. [CrossRef] [Google Scholar]
  17. F. Casenave, A. Ern and G. Sylvand, Coupled BEM–FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain. J. Comput. Phys. 257 (2014) 627–644. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-Y. Chemin. Perfect Incompressible Fluids. Vol. 14, Oxford University Press (1998). [Google Scholar]
  19. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1955). [Google Scholar]
  20. A.J. Cooper, Effect of mean entropy on unsteady disturbance propagation in a slowly varying duct with mean swirling flow. J. Sound Vib. 291 (2006) 779–801. [CrossRef] [Google Scholar]
  21. A.J. Cooper and N. Peake, Propagation of unsteady disturbances in a slowly varying duct with mean swirling flow. J. Fluid Mech. 445 (2001) 207–234. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Coyette, Manuel théorique ACTRAN. Free Field Technologies, Louvain-la-Neuve, Belgique (2001). [Google Scholar]
  23. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69, Springer Science & Business Media (2011). [Google Scholar]
  24. S. Duprey, Etude mathématique et numérique de la propagation acoustique d’un turboréacteur. Ph.D. thesis, Université Henri Poincaré-Nancy 1 (2006). [Google Scholar]
  25. B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. 74 (1977) 1765–1766. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  26. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. [Google Scholar]
  27. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Vol. 159. Springer Science & Business Media (2013). [Google Scholar]
  28. W. Eversman, The boundary condition at an impedance wall in a non-uniform duct with potential mean flow. J. Sound Vib. 246 (2001) 63–69. [CrossRef] [Google Scholar]
  29. K.O. Friedrichs, Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11 (1958) 333–418. [CrossRef] [Google Scholar]
  30. G. Gabard and E.J. Brambley, A full discrete dispersion analysis of time-domain simulations of acoustic liners with flow. J. Comput. Phys. 273 (2014) 310–326. [CrossRef] [MathSciNet] [Google Scholar]
  31. H. Galbrun, Propagation d’une onde sonore dans l’atmosphère et théorie des zones de silence. Gauthier-Villars et Cie, Éditeurs, Libraires du Bureau des longitudes, de l (1931). [Google Scholar]
  32. M. Goldstein, Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89 (1978) 433–468. [CrossRef] [Google Scholar]
  33. V.V. Golubev and H.M. Atassi, Sound propagation in an annular duct with mean potential swirling flow. J. Sound Vib. 198 (1996) 601–616. [CrossRef] [Google Scholar]
  34. V.V. Golubev and H.M. Atassi, Acoustic–vorticity waves in swirling flows. J. Sound Vib. 209 (1998) 203–222. [CrossRef] [Google Scholar]
  35. L. Hägg and M. Berggren, On the well-posedness of Galbrun’s equation. J. Math. Pures App. 150 (2021) 112–133. [CrossRef] [Google Scholar]
  36. M. Halla and T. Hohage, On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations. SIAM J. Math. Anal. 53 (2021) 4068–4095. [CrossRef] [MathSciNet] [Google Scholar]
  37. C. Heaton and N. Peake, Algebraic and exponential instability of inviscid swirling flow. J. Fluid Mech. 565 (2006) 279–318. [CrossRef] [MathSciNet] [Google Scholar]
  38. M. Jensen, Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. Ph.D. thesis, Citeseer (2004). [Google Scholar]
  39. P. Joly, Some trace theorems in anisotropic Sobolev spaces. SIAM J. Math. Anal. 23 (1992) 799–819. [CrossRef] [MathSciNet] [Google Scholar]
  40. P. Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation. SeMA J. 57 (2012) 5–48. [CrossRef] [Google Scholar]
  41. T. Kato, Perturbation Theory for Linear Operators. Vol. 132, Springer Science & Business Media (2013). [Google Scholar]
  42. R. Kirby, A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow. J. Sound Vib. 325 (2009) 565–582. [CrossRef] [Google Scholar]
  43. R. Kirby and F.D. Denia, Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. J. Acoust. Soc. Am. 122 (2007) 3471–3482. [CrossRef] [PubMed] [Google Scholar]
  44. M.J. Lighthill, On sound generated aerodynamically I. General theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 211 (1952) 564–587. [Google Scholar]
  45. A. Michalke, On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (1965) 521–544. [CrossRef] [MathSciNet] [Google Scholar]
  46. A. Nicolopoulos, M. Campos-Pinto and B. Després, A stable formulation of resonant Maxwell’s equations in cold plasma. J. Comput. Appl. Math. 362 (2019) 185–204. [CrossRef] [MathSciNet] [Google Scholar]
  47. K.S. Peat and K.L. Rathi, A finite element analysis of the convected acoustic wave motion in dissipative silencers. J. Sound Vib. 184 (1995) 529–545. [CrossRef] [Google Scholar]
  48. A.D. Pierce, Wave equation for sound in fluids with unsteady inhomogeneous flow. J. Acoust. Soc. Am. 87 (1990) 2292–2299. [CrossRef] [Google Scholar]
  49. M. Renardy and R.C. Rogers, An Introduction to Partial Differential Equations. Vol. 13, Springer Science & Business Media (2006). [Google Scholar]
  50. S.W. Rienstra and W. Eversman, A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts. J. Fluid Mech. 437 (2001) 367–384. [CrossRef] [Google Scholar]
  51. S.W. Rienstra and A. Hirschberg, An introduction to acoustics. Eindhoven Univ. Technol. 18 (2004) 19. [Google Scholar]
  52. C.K. Tam and L. Auriault, The wave modes in ducted swirling flows. J. Fluid Mech. 371 (1998) 1–20. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you