Open Access
Issue
ESAIM: M2AN
Volume 56, Number 3, May-June 2022
Page(s) 893 - 942
DOI https://doi.org/10.1051/m2an/2022022
Published online 25 April 2022
  1. P. Andries, J.-F. Bourgat, P. Le Tallec and B. Perthame, Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Mech. Eng. 191 (2002) 3369–3390. [CrossRef] [Google Scholar]
  2. P. Andries, P. Le Tallec, J.-P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19 (2000) 813–830. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Baranger, Y. Dauvois, G. Marois, J. Mathé, J. Mathiaud and L. Mieussens, A BGK model for high temperature rarefied gas flows. Eur. J. Mech.-B/Fluids 80 (2020) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Bernard, A. Iollo and G. Puppo, BGK polyatomic model for rarefied flows. J. Sci. Comput. 78 (2019) 1893–1916. [CrossRef] [MathSciNet] [Google Scholar]
  5. P.L. Bhatnagar, E.P. Gross and M. Krook, A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems. Phys. Rev. 94 (1954) 511–525. [CrossRef] [Google Scholar]
  6. S. Boscarino, S.Y. Cho, M. Groppi and G. Russo, BGK models for inert mixtures: comparison and applications. Kinet. Relat. Models. 14 (2021) 895–928. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Boscarino, S.-Y. Cho, G. Russo and S.-B. Yun, High order conservative Semi-Lagrangian scheme for the BGK model of the Boltzmann equation. Commun. Comput. Phys. 29 (2021) 1–56. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Brull and J. Schneider, A new approach for the ellipsoidal statistical model. Contin. Mech. Thermodyn. 20 (2008) 63–74. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases. Contin. Mech. Thermodyn. 20 (2009) 489–508. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.E. Caflisch, S. Jin and G. Russo, Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34 (1997) 246–281. [CrossRef] [MathSciNet] [Google Scholar]
  11. Z. Cai and R. Li, The NRxx method for polyatomic gases. J. Comput. Phys. 267 (2014) 63–91. [CrossRef] [MathSciNet] [Google Scholar]
  12. S.Y. Cho, S. Boscarino, M. Groppi and G. Russo, Conservative semi-Lagrangian schemes for a general consistent BGK model for inert gas mixtures. Preprint: arXiv:2012.02497 (2020). [Google Scholar]
  13. S.Y. Cho, S. Boscarino, G. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part I: reconstruction. J. Comput. Phys. 432 (2021) 110159. [CrossRef] [Google Scholar]
  14. S.Y. Cho, S. Boscarino, G. Russo and S.-B. Yun, Conservative semi-Lagrangian schemes for kinetic equations Part II: applications. J. Comput. Phys. 436 (2021) 110281. [CrossRef] [Google Scholar]
  15. F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28 (1991) 26–42. [Google Scholar]
  16. N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229 (2010) 1927–1953. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Dimarco and L. Pareschi, Numerical methods for kinetic equations. Acta Numer. 23 (2014) 369–520. [Google Scholar]
  18. C. Elisabetta, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005) 1071–1091. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (2001) 166–187. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. 46 (2011) 204–224. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Groppi, G. Russo and G. Stracquadanio, Boundary conditions for semi-Lagrangian methods for the BGK model. Commun. Appl. Ind. Math. 7 (2016) 138–164. [Google Scholar]
  22. M. Groppi, G. Russo and G. Stracquadanio, High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14 (2016) 389–414. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Groppi, G. Russo and G. Stracquadanio, Semi-lagrangian approximation of BGK models for inert and reactive gas mixtures. In: Meeting on Particle Systems and PDE’s. Springer, Cham (2016) 53–80. [Google Scholar]
  24. L.H. Holway, Kinetic theory of shock structure using and ellipsoidal distribution function. In: Rarefied Gas Dynamics. Vol. I of Proc. Fourth Int. Symp., Univ. Toronto, 1964. Academic Press, New York (1966) 193–215. [Google Scholar]
  25. J. Hu, R. Shu and X. Zhang, Asymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56 (2018) 942–973. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. [Google Scholar]
  27. C. Klingenberg, M. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture of polyatomic molecules. Preprint: arXiv:1806.11486 (2018). [Google Scholar]
  28. S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3 (2018) 023401. [CrossRef] [Google Scholar]
  29. S. Kosuge, K. Aoki and T. Goto, Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation. In: AIP Conference Proceedings. Vol. 1786. AIP Publishing LLC (2016, November) 180004. [Google Scholar]
  30. S. Kosuge, H.W. Kuo and K. Aoki, A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure. J. Stat. Phys. 177 (2019) 209–251. [CrossRef] [MathSciNet] [Google Scholar]
  31. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3 (2000) 269–289. [Google Scholar]
  32. S. Park, Mathematical studies on the ellipsoidal BGK model of the Boltzmann equation for polyatomic particles. Ph.D. thesis, Sungkyunkwan University, Department of Mathematics (2018). [Google Scholar]
  33. S. Park and S.-B. Yun, Entropy production estimates for the polyatomic ellipsoidal BGK model. Appl. Math. Lett. 58 (2016) 26–33. [CrossRef] [MathSciNet] [Google Scholar]
  34. S. Park and S.-B. Yun, Cauchy problem for the ellipsoidal BGK model for polyatomic particles. J. Differ. Equ. 266 (2019) 7678–7708. [CrossRef] [Google Scholar]
  35. S. Pieraccini and G. Puppo, Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 32 (2007) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  36. M. Pirner, A BGK model for gas mixtures of polyatomic molecules allowing for slow and fast relaxation of the temperatures. J. Stat. Phys. 173 (2018) 1660–1687. [CrossRef] [MathSciNet] [Google Scholar]
  37. J.M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229 (2010) 1130–1149. [CrossRef] [MathSciNet] [Google Scholar]
  38. J.M. Qiu and C.W. Shu, Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230 (2011) 863–889. [CrossRef] [MathSciNet] [Google Scholar]
  39. G. Russo and F. Filbet, Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Models 2 (2009) 231–250. [CrossRef] [MathSciNet] [Google Scholar]
  40. G. Russo and P. Santagati, A new class of large time step methods for the BGK models of the Boltzmann equation. Preprint: arXiv:1103.5247v1 (2011). [Google Scholar]
  41. G. Russo, P. Santagati and S.-B. Yun, Convergence of a semi-Lagrangian scheme for the BGK model of the Boltzmann equation. SIAM J. Numer. Anal. 50 (2012) 1111–1135. [CrossRef] [MathSciNet] [Google Scholar]
  42. G. Russo and S.B. Yun, Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation. SIAM J. Numer. Anal. 56 (2018) 3580–3610. [CrossRef] [MathSciNet] [Google Scholar]
  43. P. Santagati, High order semi-Lagrangian schemes for the BGK model of the Boltzmann equation. Diss. PhD. thesis, Department of Mathematics and Computer Science, University of Catania (2007). [Google Scholar]
  44. E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149 (1999) 201–220. [CrossRef] [MathSciNet] [Google Scholar]
  45. T. Xiong, G. Russo and J.M. Qiu, Conservative multi-dimensional semi-lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. Preprint: arXiv:1607.07409 (2016). [Google Scholar]
  46. S.B. Yun, Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinet. Relat. Models 9 (2016) 605–619. [CrossRef] [MathSciNet] [Google Scholar]
  47. S.B. Yun, Ellipsoidal BGK model for polyatomic molecules near Maxwellians: a dichotomy in the dissipation estimate. J. Differ. Equ. 266 (2019) 5566–5614. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you