Open Access
Issue
ESAIM: M2AN
Volume 56, Number 3, May-June 2022
Page(s) 943 - 967
DOI https://doi.org/10.1051/m2an/2022023
Published online 25 April 2022
  1. F. Ahamed, M. Singh, H.-S. Song, P. Doshi, C.W. Ooi and Y.K. Ho, On the use of sectional techniques for the solution of depolymerization population balances: Results on a discrete-continuous mesh. Adv. Powder Technol. 31 (2020) 2669–2679. [CrossRef] [Google Scholar]
  2. H. Amann and C. Walker, Local and global strong solutions to continuous coagulation–fragmentation equations with diffusion. J. Differ. Equ. 218 (2005) 159–186. [CrossRef] [Google Scholar]
  3. L.G. Austin, Introduction to the mathematical description of grinding as a rate process. Powder Technol. 5 (1971) 1–17. [CrossRef] [Google Scholar]
  4. G. Baird and E. Süli, A finite volume scheme for the solution of a mixed discrete-continuous fragmentation model. ESAIM: M2AN 55 (2021) 1067–1101. [CrossRef] [EDP Sciences] [Google Scholar]
  5. E. Ben-Naim and P. Krapivsky, Multiscaling in fragmentation. Phys. D: Nonlinear Phenom. 107 (1997) 156–160. [CrossRef] [Google Scholar]
  6. E. Bilgili and B. Scarlett, Population balance modeling of non-linear effects in milling processes. Powder Technol. 153 (2005) 59–71. [CrossRef] [Google Scholar]
  7. M. Bonacini, B. Niethammer and J.J. Velázquez, Solutions with peaks for a coagulation–fragmentation equation. Part I: stability of the tails. Commun. Partial. Differ. Equ. 45 (2020) 351–391. [CrossRef] [Google Scholar]
  8. J.-P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations. Math. Comput. 77 (2008) 851–882. [Google Scholar]
  9. D. Boyer, G. Tarjus and P. Viot, Exact solution and multifractal analysis of a multivariable fragmentation model. J. Phys. I 7 (1997) 13–38. [Google Scholar]
  10. W. Breuninger, K. Piyachomkwan and K. Sriroth, Chapter 12-tapioca/cassava starch: production and use. Starch (Third Edition) 1 (2009) 541–568. [Google Scholar]
  11. J. Calvo and P.-E. Jabin, Large time asymptotics for a modified coagulation model. J. Differ. Equ. 250 (2011) 2807–2837. [CrossRef] [Google Scholar]
  12. J.A. Cañizo and S. Throm, The scaling hypothesis for smoluchowski’s coagulation equation with bounded perturbations of the constant kernel. J. Differ. Equ. 270 (2021) 285–342. [CrossRef] [Google Scholar]
  13. M. Escobedo, P. Laurençot, S. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models. J. Differ. Equ. 195 (2003) 143–174. [CrossRef] [Google Scholar]
  14. M. Hounslow, J. Pearson and T. Instone, Tracer studies of high-shear granulation: II. Population balance modeling. AIChE J. 47 (2001) 1984–1999. [CrossRef] [Google Scholar]
  15. W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations. Vol. 33. Springer Science & Business Media (2013). [Google Scholar]
  16. H.Y. Ismail, S. Shirazian, M. Singh, D. Whitaker, A.B. Albadarin and G.M. Walker, Compartmental approach for modelling twin-screw granulation using population balances. Int. J. Pharm. 576 (2020) 118737. [CrossRef] [Google Scholar]
  17. H.Y. Ismail, M. Singh, S. Shirazian, A.B. Albadarin and G.M. Walker, Development of high-performance hybrid ann-finite volume scheme (ann-fvs) for simulation of pharmaceutical continuous granulation. Chem. Eng. Res. Des. 163 (2020) 320–326. [CrossRef] [Google Scholar]
  18. P. Kapur and P. Agrawal, Approximate solutions to the discretized batch grinding equation. Chem. Eng. Sci. 25 (1970) 1111–1113. [CrossRef] [Google Scholar]
  19. G. Kaur, M. Singh, J. Kumar, T. De Beer and I. Nopens, Mathematical modelling and simulation of a spray fluidized bed granulator. Processes 6 (2018) 195. [CrossRef] [Google Scholar]
  20. G. Kaur, M. Singh, T. Matsoukas, J. Kumar, T. De Beer and I. Nopens, Two-compartment modeling and dynamics of top-sprayed fluidized bed granulator. Appl. Math. Model. 68 (2019) 267–280. [CrossRef] [Google Scholar]
  21. G. Kaur, R. Singh, M. Singh, J. Kumar and T. Matsoukas, Analytical approach for solving population balances: a homotopy perturbation method. J. Phys. A: Math. Theor. 52 (2019) 385201. [CrossRef] [Google Scholar]
  22. M. Kostoglou, Mathematical analysis of polymer degradation with chain-end scission. Chem. Eng. Sci. 55 (2000) 2507–2513. [CrossRef] [Google Scholar]
  23. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, A discretized model for tracer population balance equation: Improved accuracy and convergence. Comput. Chem. Eng. 30 (2006) 1278–1292. [CrossRef] [Google Scholar]
  24. R. Kumar, J. Kumar and G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Models Methods Appl. Sci. 23 (2013) 1235–1273. [Google Scholar]
  25. C. Lécot and W. Wagner, A quasi–monte carlo scheme for smoluchowski’s coagulation equation. Math. Comput. 73 (2004) 1953–1966. [CrossRef] [Google Scholar]
  26. P. Linz, Convergence of a discretization method for integro-differential equations. Numerische Mathematik 25 (1975) 103–107. [Google Scholar]
  27. H. Liu and M. Li, Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (cfd) analysis. Int. J. Pharm. 475 (2014) 256–269. [CrossRef] [Google Scholar]
  28. B.J. McCoy and G. Madras, Discrete and continuous models for polymerization and depolymerization. Chem. Eng. Sci. 56 (2001) 2831–2836. [Google Scholar]
  29. D. McLaughlin, W. Lamb and A. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28 (1997) 1173–1190. [CrossRef] [MathSciNet] [Google Scholar]
  30. D. McLaughlin, W. Lamb and A. McBride, A semigroup approach to fragmentation models. SIAM J. Math. Anal. 28 (1997) 1158–1172. [CrossRef] [MathSciNet] [Google Scholar]
  31. M.N. Nandanwar and S. Kumar, A new discretization of space for the solution of multi-dimensional population balance equations: Simultaneous breakup and aggregation of particles. Chem. Eng. Sci. 63 (2008) 3988–3997. [CrossRef] [Google Scholar]
  32. H.M. Omar and S. Rohani, Crystal population balance formulation and solution methods: A review. Cryst. Growth Des. 17 (2017) 4028–4041. [CrossRef] [Google Scholar]
  33. M. Peglow, J. Kumar, G. Warnecke, S. Heinrich, E. Tsotsas, L. Mörl and M. Hounslow, An improved discretized tracer mass distribution of Hounslow et al. AIChE J. 52 1326–1332. [Google Scholar]
  34. C.L. Prasher, Crushing and grinding process handbook. Wiley (1987). [Google Scholar]
  35. K.J. Reid, A solution to the batch grinding equation. Chem. Eng. Sci. 20 (1965) 953–963. [CrossRef] [Google Scholar]
  36. F. Rezakhanlou, Moment bounds for the solutions of the smoluchowski equation with coagulation and fragmentation. Proc. R. Soc. Edinb. A: Math. 140 (2010) 1041–1059. [CrossRef] [Google Scholar]
  37. O. Saito, Statistical theories of cross-linking. The radiation chemistry of macromolecules 1 (1972) 223. [CrossRef] [Google Scholar]
  38. S. Shirazian, H.Y. Ismail, M. Singh, R. Shaikh, D.M. Croker and G.M. Walker, Multi-dimensional population balance modelling of pharmaceutical formulations for continuous twin-screw wet granulation: Determination of liquid distribution. Int. J. Pharm. 566 (2019) 352–360. [CrossRef] [Google Scholar]
  39. M. Singh, Accurate and efficient approximations for generalized population balances incorporating coagulation and fragmentation. J. Comput. Phys. 435 (2021) 110215. [CrossRef] [Google Scholar]
  40. P. Singh and M. Hassan, Kinetics of multidimensional fragmentation. Phys. Rev. E 53 (1996) 3134. [Google Scholar]
  41. M. Singh and G. Walker, Finite volume approach for fragmentation equation and its mathematical analysis. Numer. Algorithms 89 (2021) 465–486. [Google Scholar]
  42. M. Singh, G. Kaur, T. De Beer and I. Nopens, Solution of bivariate aggregation population balance equation: a comparative study. React. Kinet. Mech. Catal. 123 (2018) 385–401. [CrossRef] [Google Scholar]
  43. M. Singh, T. Matsoukas, A.B. Albadarin and G. Walker, New volume consistent approximation for binary breakage population balance equation and its convergence analysis. ESAIM: M2AN 53 (2019) 1695–1713. [CrossRef] [EDP Sciences] [Google Scholar]
  44. M. Singh, K. Vuik, G. Kaur and H.-J. Bart, Effect of different discretizations on the numerical solution of 2d aggregation population balance equation. Powder Technol. 342 (2019) 972–984. [CrossRef] [Google Scholar]
  45. M. Singh, T. Matsoukas and G. Walker, Two moments consistent discrete formulation for binary breakage population balance equation and its convergence. Appl. Numer. Math. 166 (2021) 76–91. [CrossRef] [MathSciNet] [Google Scholar]
  46. E. Teunou and D. Poncelet, Batch and continuous fluid bed coating–review and state of the art. J. Food Eng. 53 (2002) 325–340. [CrossRef] [Google Scholar]
  47. A. Vreman, C. Van Lare and M. Hounslow, A basic population balance model for fluid bed spray granulation. Chem. Eng. Sci. 64 (2009) 4389–4398. [CrossRef] [Google Scholar]
  48. R.M. Ziff, New solutions to the fragmentation equation. J. Phys. A: Math. General 24 (1991) 2821. [CrossRef] [Google Scholar]
  49. R.M. Ziff and E. McGrady, The kinetics of cluster fragmentation and depolymerisation. J. Phys. A: Math. General 18 (1985) 3027. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you