Open Access
Volume 56, Number 3, May-June 2022
Page(s) 1007 - 1025
Published online 25 April 2022
  1. N. Arada, P. Correia and A. Sequeira, Analysis and finite element simulations of a second-order fluid model in a bounded domain. Numer. Methods Part. Differ. Equ. Int. J. 23 (2007) 1468–1500. [CrossRef] [Google Scholar]
  2. H.A. Barnes, J.F. Hutton and K. Walters, An Introduction to Rheology. Vol. 3. Elsevier (1989). [Google Scholar]
  3. J.-M. Bernard, Solutions globales variationnelles et classiques des fluides de grade deux. C. R. Acad. Sci. Ser. I Math. 327 (1998) 953–958. [Google Scholar]
  4. J.-M. Bernard, Stationary problem of second-grade fluids in three dimensions: existence, uniqueness and regularity. Math. Methods Appl. Sci. 22 (1999) 655–687. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-M. Bernard, Problem of second grade fluids in convex polyhedrons. SIAM J. Math. Anal. 44 (2012) 2018–2038. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-M. Bernard, Steady transport equation in the case where the normal component of the velocity does not vanish on the boundary. SIAM J. Math. Anal. 44 (2012) 993–1018. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-M. Bernard, Solutions in H1 of the steady transport equation in a bounded polygon with a full non-homogeneous velocity. J. Math. Pures App. 107 (2017) 697–736. [CrossRef] [Google Scholar]
  8. J.-M. Bernard, Fully nonhomogeneous problem of two-dimensional second grade fluids. Math. Methods Appl. Sci. 41 (2018) 6772–6792. [CrossRef] [MathSciNet] [Google Scholar]
  9. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. 3rd edition. Springer-Verlag (2008). [Google Scholar]
  10. D. Cioranescu, V. Girault and K.R. Rajagopal, Mechanics and Mathematics of Fluids of the Differential Type. In Vol. 35 of Advances in Mechanics and Mathematics. Springer (2016). [CrossRef] [Google Scholar]
  11. J.L. Ericksen and R.S. Rivlin, Stress-deformation relations for isotropic materials. Arch. Ration. Mech. Anal. 4 (1955) 323–425. [Google Scholar]
  12. B.A. Gecim, Non-Newtonian effects of multigrade oils on journal bearing performance. Tribol. Trans. 33 (1990) 384–394. [CrossRef] [Google Scholar]
  13. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  14. V. Girault and L.R. Scott, Finite element discretizations of a two-dimensional grade-two fluid model. ESAIM: M2AN 35 (2001) 1007–1053. [CrossRef] [EDP Sciences] [Google Scholar]
  15. V. Girault and L.R. Scott, Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981–1011. [CrossRef] [MathSciNet] [Google Scholar]
  16. V. Girault and L.R. Scott, Wellposedness of some Oldroyd models that lack explicit dissipation. Research Report UC/CS TR-2017-04, Dept. Comp. Sci., Univ. Chicago (2017). [Google Scholar]
  17. D. Gómez-Díaz and J.M. Navaza, Rheology of aqueous solutions of food additives: effect of concentration, temperature and blending. J. Food Eng. 56 (2003) 387–392. [CrossRef] [Google Scholar]
  18. L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Pergamon Press (1959). [Google Scholar]
  19. R. Lapasin, Rheology of Industrial Polysaccharides: Theory and Applications. Springer Science & Business Media (2012). [Google Scholar]
  20. A.S. Lodge, Low-shear-rate rheometry and polymer quality control. Chem. Eng. Commun. 32 (1985) 1–60. [CrossRef] [Google Scholar]
  21. A.S. Lodge, W.G. Pritchard and L.R. Scott, The hole–pressure problem. IMA J. Appl. Math. 46 (1991) 39–66. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Morgan and L. Ridgway Scott, Towards a unified finite element method for the Stokes equations. SIAM J. Sci. Comput. 40 (2018) A130–A141. [CrossRef] [Google Scholar]
  23. M. Nyström, H.R. Tamaddon Jahromi, M. Stading and M.F. Webster, Hyperbolic contraction measuring systems for extensional flow. Mech. Time-Depend. Mater. 21 (2017) 455–479. [CrossRef] [Google Scholar]
  24. S. Pollock and L. Ridgway Scott, Transport equations with inflow boundary conditions. Submitted (2022). [Google Scholar]
  25. L. Schwartz, Théorie des Distributions. Hermann, Paris (1966). [Google Scholar]
  26. L.R. Scott, C1 piecewise polynomials satisfying boundary conditions. Research Report UC/CS TR-2019-18, Dept. Comp. Sci., Univ. Chicago (2019). [Google Scholar]
  27. T.W. Selby, The non-Newtonian characteristics of lubricating oils. ASLE Trans. 1 (1958) 68–81. [CrossRef] [Google Scholar]
  28. P.A. Vasquez, Y. Jin, E. Palmer, D. Hill and M. Gregory Forest, Modeling and simulation of mucus flow in human bronchial epithelial cell cultures – Part I: idealized axisymmetric swirling flow. PLoS Comput. Biol. 12 (2016) 1–28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you